Andrzej Ostrowski
Warsaw University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrzej Ostrowski.
Inorganic Chemistry | 2014
Grzegorz Gabka; Piotr Bujak; Kamila Giedyk; Andrzej Ostrowski; Karolina Malinowska; Jerzy Herbich; Barbara Golec; Ireneusz Wielgus; Adam Pron
A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.
Carbohydrate Research | 2009
Tomasz Gubica; Andrzej Temeriusz; Katarzyna Paradowska; Andrzej Ostrowski; Paulina Klimentowska; Michał K. Cyrański
The X-ray diffraction patterns, (13)C CP MAS NMR spectra, and powder X-ray diffraction analyses were obtained for selected p-nitrophenyl glycosides: alpha- and beta-D-galactopyranosides (1 and 2), alpha- and beta-D-glucopyranosides (3 and 4), and alpha- and beta-D-mannopyranosides (5 and 6). In X-ray diffraction analysis of 1 and 2, characteristic shortening and lengthening of selected bonds were observed in the molecules of 1 due to anomeric effect, and in the crystal lattice of 1 and 2, hydrogen bonds of complex network were detected. In the crystal asymmetric unit of 1 there were two independent molecules, whereas in 2 there was one molecule. For 1 and 3-6 the number of resonances in solid-state (13)C NMR spectra exceeded the number of the carbon atoms in the molecules, while for 2 there were distinct singlet resonances in its solid-state NMR spectrum. Furthermore, the powder X-ray diffraction (PXRD) performed for 1-3 and 5 revealed that 1, 3, and 5 existed as single polymorphs proving that the doublets observed in appropriate solid-state NMR spectra were connected with two non-equivalent molecules in the crystal asymmetric unit. On the other hand 2 existed as a mixture of two polymorphs, one of them was almost in agreement with the calculated pattern obtained from XRD (the difference in volumes of the unit cells), and the subsequent unknown polymorph existed in small amounts and therefore it was not observed in solid-state NMR measurements.
Inorganic Chemistry | 2016
Grzegorz Gabka; Piotr Bujak; Andrzej Ostrowski; Waldemar Tomaszewski; Wojciech Lisowski; Janusz W. Sobczak; Adam Pron
Cu-Fe-S nanocrystals exhibiting a strong localized surface plasmon resonance (LSPR) effect were synthesized for the first time. The elaborated reproducible preparation procedure involved copper(II) oleate, iron(III) stearate, and sulfur powder dissolved in oleylamine (OLA) as precursors. The wavelength of the plasmonic resonance maximum could be tuned by changing the Cu/Fe ratio in the resulting nanocrystals, being the most energetic for the 1:1 ratio (486 nm) and undergoing a bathochromic shift to ca. 1200 nm with an increase to 6:1. LSPR could also be observed in nanocrystals prepared from the same metal precursors and sulfur powder dissolved in 1-octadecene (ODE), provided that the sulfur precursor was taken in excess. Detailed analysis of the reaction mixture by chromatographic techniques, supplemented by mass spectrometry and (1)H NMR spectroscopy enabled the identification of the true chemical nature of the sulfur precursor in S/OLA, namely, (C18H35NH3(+))(C18H35NH-S8(-)), a reactive product of the reduction of elemental sulfur by the amine groups of OLA. In the case of the S/ODE precursor, the true precursors are much less reactive primary or secondary thioethers and dialkyl polysulfides.
Carbohydrate Research | 2011
Tomasz Gubica; Dorota K. Stępień; Andrzej Temeriusz; Katarzyna Paradowska; Ewa Głowacka; Michał K. Cyrański; Andrzej Ostrowski
Comprehensive structural analyses were performed for N-o-, N-m-, and N-p-nitrophenyl-2,3,4-tri-O-acetyl-β-D-xylopyranosylamines. Single-crystal X-ray diffraction data were collected and revealed that one compound under investigation undergoes temperature-dependent polymorph transitions (crystal structures of three polymorphs were obtained). The number of molecules in the independent part of the crystal unit cells was in agreement with the number of resonances in solid-state (13)C NMR spectra. Therefore, the compounds exist as single polymorphs at room temperature, as confirmed by powder X-ray diffraction measurements. Significant differences in (13)C chemical shifts between solution and solid-state NMR for selected carbon atoms confirmed the existence of intra- and/or intermolecular interactions.
Dalton Transactions | 2018
Maciej Dębowski; Krzysztof Łokaj; Andrzej Ostrowski; Janusz Zachara; Paulina Wiecińska; Paweł Falkowski; Anna Krzton-Maziopa; Zbigniew Florjańczyk
The thermal transitions of inorganic-organic hybrid polymers composed of linear aluminum tris(diorganophosphate) chains with a general formula of catena-Al[O2P(OR)2]3 (where R = C1-C8 alkyl group or phenyl moiety) have been studied by means of DSC, powder XRD, TGA and TG-QMS, as well as optical spectroscopy. DSC and XRD reveal that most of them undergo reversible structural transformations in the solid state between -100 and 200 °C caused by the changes in conformation of their organic substituents; however, a translational displacement of the rigid polymeric chains occurs only in the case of the derivative bearing long 2-ethylhexyl groups, which becomes liquid at about 140 °C. The thermal decomposition of the studied polymers begins between 200 and 265 °C depending on the type of organic substituent R decorating their aluminophospate core. TGA combined with mass spectrometry of the evolved gaseous products shows that the pyrolytic decomposition of Al[O2P(OR)2]3 proceeds either through β-elimination of olefin (for compounds with C2-C8 aliphatic ligands), or a homolytic cleavage of the P-OR bond (for methyl and phenyl derivatives); both processes are accompanied by condensation of the newly formed POH groups and liberation of water. Powder XRD, FTIR and SEM analyses of the solid residues indicate that thermolysis of Al[O2P(OR)2]3 accompanied by olefin elimination leads to the formation of condensed aluminum phosphates, mainly aluminum cyclohexaphosphate, exhibiting porous morphology. On the other hand, thermal degradation of methyl or phenyl derivatives results in amorphous aluminophosphate residues, and the latter contains conducting carbonaceous phases.
Journal of Solid State Electrochemistry | 2009
Andrzej Królikowski; Ewelina Płońska; Andrzej Ostrowski; Mikolaj Donten; Zbigniew Stojek
Chemical Communications | 2015
Grzegorz Gabka; Piotr Bujak; Maciej Gryszel; Andrzej Ostrowski; Karolina Malinowska; Grazyna Zofia Zukowska; Fabio Agnese; Adam Pron; Peter Reiss
Chemistry of Materials | 2007
Zbigniew Florjańczyk; Andrzej Wolak; Maciej Dȩbowski; Andrzej Plichta; Joanna Ryszkowska; Janusz Zachara; Andrzej Ostrowski; and Ewelina Zawadzak; Magalena Jurczyk-Kowalska‡
Physical Chemistry Chemical Physics | 2014
Grzegorz Gabka; Piotr Bujak; Kamila Giedyk; Kamil Kotwica; Andrzej Ostrowski; Karolina Malinowska; Wojciech Lisowski; Janusz W. Sobczak; Adam Pron
Physical Chemistry Chemical Physics | 2016
Grzegorz Gabka; Piotr Bujak; J. Żukrowski; Damian Zabost; Kamil Kotwica; Karolina Malinowska; Andrzej Ostrowski; Ireneusz Wielgus; Wojciech Lisowski; Janusz W. Sobczak; Marek Przybylski; Adam Pron