Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrzej Smajdor is active.

Publication


Featured researches published by Andrzej Smajdor.


Aequationes Mathematicae | 1990

Additive selections of superadditive set-valued functions

Andrzej Smajdor

SummaryA set-valued functionF from a coneC with a cone-basis of a topological vector spaceX into the family of all non-empty compact convex subsets of a locally convex spaceY is called superadditive provided thatF(x) + F(y) ⊂ F(x + y), for allx, y ∈ C. We show that every superadditive set-valued function admits an additive selection.


Aequationes Mathematicae | 1995

Affine selections of convex set-valued functions

Andrzej Smajdor; Wilhelmina Smajdor

SummaryIt is shown that every convex set-valued function defined on a cone with a cone-basis in a real linear space with compact values in a real locally convex space has an affine selection. Similar results can be obtained for midconvex set-valued functions.


Results in Mathematics | 1994

Semigroups of Jensen set-valued functions

Andrzej Smajdor

A set-valued function F defined on a convex cone S in a real vector space X into the set n(Y) of all non-empty subsets of a real vector space Y is said to be the Jensen function iff % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Open Mathematics | 2012

Concave iteration semigroups of linear continuous set-valued functions

Andrzej Smajdor; Wilhelmina Smajdor


Journal of Applied Analysis | 2015

On additive correspondences

Masoumeh Aghajani; Andrzej Smajdor

{1\over 2}\lbrack F(x)+F(x)\rbrack=F\lbrack{1\over 2}(x+y)\rbrack


Open Mathematics | 2014

Commutativity of set-valued cosine families

Andrzej Smajdor; Wilhelmina Smajdor


Archive | 2000

Entire Solutions of the Hille-Type Functional Equation

Andrzej Smajdor; Wilhelmina Smajdor

for all x, y ∈ S. This note deals with iteration semigroups of Jensen set-valued functions on S.


Aequationes Mathematicae | 2008

On concave iteration semigroups of linear set-valued functions

Andrzej Smajdor

AbstractLet {Ft: t ≥ 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F0(x) − Ft (x) exist for x ∈ K and t > 0, then DtFt (x) = (−1)Ft ((−1)G(x)) for x ∈ K and t ≥ 0, where DtFt (x) denotes the derivative of Ft (x) with respect to t and


Aequationes Mathematicae | 1998

Increasing iteration semigroups of Jensen set-valued functions

Andrzej Smajdor


Annales Polonici Mathematici | 2004

Hukuhara's differentiable iteration semigroups of linear set-valued functions

Andrzej Smajdor

G(x) = \mathop {\lim }\limits_{s \to 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord{\left/ {\vphantom {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \kern-\nulldelimiterspace} {\left( { - s} \right)}}

Collaboration


Dive into the Andrzej Smajdor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge