Andrzej Smajdor
Pedagogical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrzej Smajdor.
Aequationes Mathematicae | 1990
Andrzej Smajdor
SummaryA set-valued functionF from a coneC with a cone-basis of a topological vector spaceX into the family of all non-empty compact convex subsets of a locally convex spaceY is called superadditive provided thatF(x) + F(y) ⊂ F(x + y), for allx, y ∈ C. We show that every superadditive set-valued function admits an additive selection.
Aequationes Mathematicae | 1995
Andrzej Smajdor; Wilhelmina Smajdor
SummaryIt is shown that every convex set-valued function defined on a cone with a cone-basis in a real linear space with compact values in a real locally convex space has an affine selection. Similar results can be obtained for midconvex set-valued functions.
Results in Mathematics | 1994
Andrzej Smajdor
A set-valued function F defined on a convex cone S in a real vector space X into the set n(Y) of all non-empty subsets of a real vector space Y is said to be the Jensen function iff % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!
Open Mathematics | 2012
Andrzej Smajdor; Wilhelmina Smajdor
Journal of Applied Analysis | 2015
Masoumeh Aghajani; Andrzej Smajdor
{1\over 2}\lbrack F(x)+F(x)\rbrack=F\lbrack{1\over 2}(x+y)\rbrack
Open Mathematics | 2014
Andrzej Smajdor; Wilhelmina Smajdor
Archive | 2000
Andrzej Smajdor; Wilhelmina Smajdor
for all x, y ∈ S. This note deals with iteration semigroups of Jensen set-valued functions on S.
Aequationes Mathematicae | 2008
Andrzej Smajdor
AbstractLet {Ft: t ≥ 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F0(x) − Ft (x) exist for x ∈ K and t > 0, then DtFt (x) = (−1)Ft ((−1)G(x)) for x ∈ K and t ≥ 0, where DtFt (x) denotes the derivative of Ft (x) with respect to t and
Aequationes Mathematicae | 1998
Andrzej Smajdor
Annales Polonici Mathematici | 2004
Andrzej Smajdor
G(x) = \mathop {\lim }\limits_{s \to 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord{\left/ {\vphantom {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \kern-\nulldelimiterspace} {\left( { - s} \right)}}