Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrzej Zadlo is active.

Publication


Featured researches published by Andrzej Zadlo.


Journal of Neurochemistry | 2008

Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease

Luigi Zecca; Luigi Casella; Alberto Albertini; Chiara Bellei; Fabio A. Zucca; Mireille Engelen; Andrzej Zadlo; Grzegorz Szewczyk; Mariusz Zareba; Tadeusz Sarna

In Parkinson’s disease (PD), dopamine neurons containing neuromelanin selectively degenerate. Neuromelanin binds iron and accumulates in aging. Iron accumulates in reactive form during aging, PD, and is involved in neurodegeneration. It is not clear how the interaction of neuromelanin and iron can be protective or toxic by modulating redox processes. Here, we investigated the interaction of neuromelanin from human substantia nigra with iron in the presence of ascorbic acid, dopamine, and hydrogen peroxide. We observed that neuromelanin blocks hydroxyl radical production by Fenton’s reaction, in a dose‐dependent manner. Neuromelanin also inhibited the iron‐mediated oxidation of ascorbic acid, thus sparing this major antioxidant molecule in brain. The protective effect of neuromelanin on ascorbate oxidation occurs even in conditions of iron overload into neuromelanin. The blockade of iron into a stable iron–neuromelanin complex prevents dopamine oxidation, inhibiting the formation of neurotoxic dopamine quinones. The above processes occur intraneuronally in aging and PD, thus showing that neuromelanin is neuroprotective. The iron–neuromelanin complex is completely decomposed by hydrogen peroxide and its degradation rate increases with the amount of iron bound to neuromelanin. This occurs in PD when extraneuronal iron–neuromelanin is phagocytosed by microglia and iron–neuromelanin degradation releases reactive/toxic iron.


Free Radical Biology and Medicine | 2012

Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: role of ambient oxygen and azide radicals.

Liyi Huang; Tyler G. St. Denis; Yi Xuan; Ying-Ying Huang; Masamitsu Tanaka; Andrzej Zadlo; Tadeusz Sarna; Michael R. Hamblin

Sodium azide (NaN(3)) is widely employed to quench singlet oxygen during photodynamic therapy (PDT), especially when PDT is used to kill bacteria in suspension. We observed that addition of NaN(3) (100 μM or 10 mM) to gram-positive Staphylococcus aureus and gram-negative Escherichia coli incubated with methylene blue (MB) and illuminated with red light gave significantly increased bacterial killing (1-3 logs), rather than the expected protection from killing. A different antibacterial photosensitizer, the conjugate between polyethylenimine and chlorin(e6) (PEI-ce6), showed reduced PDT killing (1-2 logs) after addition of 10mM NaN(3). Azide (0.5mM) potentiated bacterial killing by Fenton reagent (hydrogen peroxide and ferrous sulfate) by up to 3 logs, but protected against killing mediated by sodium hypochlorite and hydrogen peroxide (considered to be a chemical source of singlet oxygen). The intermediacy of N(3)() was confirmed by spin-trapping and electron spin resonance studies in both MB-photosensitized reactions and Fenton reagent with addition of NaN(3). We found that N(3)() was formed and bacteria were killed even in the absence of oxygen, suggesting the direct one-electron oxidation of azide anion by photoexcited MB. This observation suggests a possible mechanism to carry out oxygen-independent PDT.


Pigment Cell & Melanoma Research | 2013

Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin

Shosuke Ito; Anna Pilat; Wolfram Gerwat; Christine M. B. Skumatz; Miho Ito; Atsumi Kiyono; Andrzej Zadlo; Yukiko Nakanishi; Ludger Kolbe; Janice M. Burke; Tadeusz Sarna; Kazumasa Wakamatsu

Although photodegradation of the retinal pigment epithelium (RPE) melanin may contribute to the etiology of age‐related macular degeneration, the molecular mechanisms of this phenomenon and the structural changes of the modified melanin remain unknown. Recently, we found that the ratio of pyrrole‐2,3,4,5‐tetracarboxylic acid (PTeCA) to pyrrole‐2,3,5‐tricarboxylic acid (PTCA) is a marker for the heat‐induced cross‐linking of eumelanin. In this study, we examined UVA‐induced changes in synthetic eumelanins to confirm the usefulness of the PTeCA/PTCA ratio as an indicator of photo‐oxidation and compared changes in various melanin markers and their ratios in human melanocytes exposed to UVA, in isolated bovine RPE melanosomes exposed to strong blue light and in human RPE cells from donors of various ages. The results indicate that the PTeCA/PTCA ratio is a sensitive marker for the oxidation of eumelanin exposed to UVA or blue light and that eumelanin and pheomelanin in human RPE cells undergo extensive structural modifications due to the life‐long exposure to blue light.


Free Radical Biology and Medicine | 2013

Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen

Tyler G. St. Denis; Daniela Vecchio; Andrzej Zadlo; Ardeshir Rineh; Pinar Avci; Liyi Huang; Anna Kozinska; Rakkiyappan Chandran; Tadeusz Sarna; Michael R. Hamblin

Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (OH) and singlet oxygen ((1)O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN(-)) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN(-) enhanced PDT (10 µM MB, 5 J/cm(2) 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10mM (P<0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10mM (P<0.01). We determined that SCN(-) rapidly depleted O2 from an irradiated MB system, reacting exclusively with (1)O2, without quenching the MB excited triplet state. SCN(-) reacted with (1)O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN(-) in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of OH, which, together with kinetic data, strongly suggests that MB, known to produce OH and (1)O2, may, under the conditions used, preferentially form (1)O2.


Pigment Cell & Melanoma Research | 2016

Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion

Grzegorz Szewczyk; Andrzej Zadlo; Michal Sarna; Shosuke Ito; Kazumasa Wakamatsu; Tadeusz Sarna

In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6‐dihydroxyindole‐2‐carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5‐S‐cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time‐resolved near‐infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450‐nm, quantum yield of singlet oxygen was very low (~10−4) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.


Pigment Cell & Melanoma Research | 2013

Nanomechanical analysis of pigmented human melanoma cells

Michal Sarna; Andrzej Zadlo; Anna Pilat; Magdalena Olchawa; Paraskevi Gkogkolou; Kvetoslava Burda; Markus Böhm; Tadeusz Sarna

Based on hitherto measurements of elasticity of various cells in vitro and ex vivo, cancer cells are generally believed to be much softer than their normal counterparts. In spite of significant research efforts on the elasticity of cancer cells, only few studies were undertaken with melanoma cells. However, there are no reports concerning pigmented melanoma cells. Here, we report for the first time on the elasticity of pigmented human melanoma cells. The obtained data show that melanin significantly increases the stiffness of pigmented melanoma cells and that the effect depends on the amount of melanin inside the cells. The dramatic impact of melanin on the nanomechanical properties of cells puts into question widely accepted paradigm about all cancer cells being softer than their normal counterparts. Our findings reveal significant limitations of the nanodiagnosis approach for melanoma and contribute to better understanding of cell elasticity.


Pigment Cell & Melanoma Research | 2016

Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method

Shosuke Ito; Marina Kikuta; Shota Koike; Grzegorz Szewczyk; Michal Sarna; Andrzej Zadlo; Tadeusz Sarna; Kazumasa Wakamatsu

Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA‐induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA‐induced degradation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA)‐melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA‐induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole‐5,6‐quinone‐2‐carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole‐2,3,5‐tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA‐melanin was confirmed by direct measurements of singlet oxygen phosphorescence.


Experimental Dermatology | 2014

Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells.

Michal Sarna; Andrzej Zadlo; Paweł Hermanowicz; Zbigniew Madeja; Kvetoslava Burda; Tadeusz Sarna

The relationship between melanin pigmentation and metastatic phenotype of melanoma cells is an intricate issue, which needs to be unambiguously determined to fully understand the process of metastasis of malignant melanoma. Despite significant research efforts undertaken to solve this problem, the outcomes are far from being satisfying. Importantly, none of the proposed explanations takes into consideration biophysical aspects of the phenomenon such as cell elasticity. Recently, we have demonstrated that melanin granules dramatically modify elastic properties of pigmented melanoma cells. This prompted us to examine the mechanical effects of melanosomes on the transmigration abilities of melanoma cells. Here, we show for the first time that melanin granules inhibit transmigration abilities of melanoma cells in a number of granules dependent manner. Moreover, we demonstrate that the inhibitory effect of melanosomes is mechanical in nature. Results obtained in this study demonstrate that cell elasticity may play a key role in the efficiency of melanoma cells spread in vivo. Our findings may also contribute to better understanding of the process of metastasis of malignant melanoma.


Free Radical Biology and Medicine | 2016

Photoaging of retinal pigment epithelial melanosomes: The effect of photobleaching on morphology and reactivity of the pigment granules.

Andrzej Zadlo; Grzegorz Szewczyk; Michal Sarna; Anna Kozinska; Anna Pilat; Patrycja Kaczara; Tadeusz Sarna

To elucidate the mechanism of age-related changes in antioxidant and photoprotective properties of human retinal pigment epithelium (RPE) melanosomes, the effect of in vitro photoaging of bovine RPE melanosomes was examined employing an array of complementary spectroscopic and analytical methods. Electron paramagnetic resonance (EPR) spectroscopy, saturation recovery EPR, atomic force microscopy (AFM) and dynamic light scattering (DLS) were used to determine melanin content of control and photobleached melanosomes, and to monitor changes in their morphology. Methylene blue (MB), TEMPO choline, dysprosium(III) ions and singlet oxygen were employed as molecular probes to characterize the efficiency of control and photobleached melanosomes to interact with different reagents. EPR oximetry, UV-vis absorption spectroscopy, iodometric assay of lipid hydroperoxides and time-resolved singlet oxygen phosphorescence were used to analyze the efficiency of photobleached and untreated melanosomes to inhibit MB-photosensitized oxidation of liposomal lipids. The obtained results revealed that, compared to untreated melanosomes, moderately photobleached melanosomes protected unsaturated lipids less efficiently against photosensitized peroxidiation, while weakly photobleached melanosomes were actually better antioxidant and photoprotective agents. The observed changes could be attributed to two effects - modification of the melanosome morphology and oxidative degradation of the melanin functional groups induced by different degree of photobleaching. While the former increases the accessibility of melanin nanoaggregates to reagents, the latter reduces the efficiency of melanin to interact with chemical and physical agents.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

The nanomechanical role of melanin granules in the retinal pigment epithelium

Michal Sarna; Magdalena Olchawa; Andrzej Zadlo; Dawid Wnuk; Tadeusz Sarna

Nanomechanical properties of cells and tissues, in particular their elasticity, play an important role in different physiological and pathological processes. Recently, we have demonstrated that melanin granules dramatically modify nanomechanical properties of melanoma cells making them very stiff and, as a result, less aggressive. Although the mechanical effect of melanin granules was demonstrated in pathological cells, it was never studied in the case of normal cells. In this work, we analyzed the impact of melanin granules on nanomechanical properties of primary retinal pigment epithelium tissue fragments isolated from porcine eyes. The obtained results clearly show that melanin granules are responsible for the exceptional nanomechanical properties of the tissue. Our findings suggest that melanin granules in the retinal pigment epithelium may play an important role in sustaining the stiffness of this single cell layer, which functions as a natural mechanical barrier separating the retina from the choroid.

Collaboration


Dive into the Andrzej Zadlo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Sarna

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Pilat

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Janice M. Burke

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Pawlak

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge