Andy Macdonald
Rothamsted Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andy Macdonald.
Biology and Fertility of Soils | 2000
D. V. Murphy; Andy Macdonald; E. A. Stockdale; K. W. T. Goulding; S. Fortune; J. L. Gaunt; P. R. Poulton; J. A. Wakefield; C. P. Webster; W. S. Wilmer
Abstract The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation, leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N. DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients, chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but there are still many gaps in our understanding.
The Journal of Agricultural Science | 1997
Andy Macdonald; P. R. Poulton; David S. Powlson; D. S. Jenkinson
15 N-labelled fertilizer was applied in spring to winter wheat, winter oilseed rape, potatoes, sugarbeet and spring beans in field experiments done in 1987 and 1988 in SE England on four contrasting soil types – a silty clay loam, a chalky loam, a sandy loam and a heavy clay. The 15 N-labelled fertilizers were applied at recommended rates; for oilseed rape, a two-thirds rate was also tested. Whole-crop recoveries of labelled nitrogen averaged 52% for winter wheat, 45% for oilseed rape, 61% for potatoes and 61% for sugarbeet. Spring beans, which received only 2·5 kg ha −1 of labelled N, recovered 26%. Removals of 15 N-labelled fertilizer N in the harvested products were rather less, averaging 32, 25, 49, 27 and 13% in wheat grain, rape seed, potato tubers, beet root and bean grain, respectively. Crop residues were either baled and removed, as with wheat and rape straw, or were flailed or ‘topped’ and left on the soil surface, as was the case with potato tops and sugarbeet tops. Wheat stubble and rape stubble, together with leaf litter and weeds, were incorporated after harvest. The ploughing in of crop residues returned 4–35% of the original nitrogen fertilizer application to the soil, in addition to that which already remained at harvest, which averaged 24, 29 and 25% of that applied to winter wheat, oilseed rape and sugarbeet respectively. Less remained at harvest after potatoes ( c . 21%) and more after spring beans ( c . 49%). Most of the labelled residue remained in the top-soil (0–23cm) layer. 15 N-labelled fertilizer unaccounted for in crop and soil (0–100 cm) at harvest of winter wheat, oilseed rape, potatoes, sugarbeet and spring beans averaged 23, 25, 19, 14 and 26% of that applied, respectively. Gaseous losses of fertilizer N by denitrification were probably greater following applications to winter wheat and oilseed rape, where the N was applied earlier (and the soils were wetter) than with potatoes and sugarbeet. Consequently, it may well be advantageous to delay the application of fertilizer N to winter wheat and oilseed rape if the soil is wet. Total inorganic N (labelled and unlabelled) in soils (0–100 cm) following harvest of potatoes given 15 N-labelled fertilizer in spring averaged 70 kg N ha −1 and was often greater than after the corresponding crops of winter wheat and oilseed rape, which averaged 53 kg N ha −1 and 49 kg N ha −1 , respectively. On average, 91 kg ha −1 of inorganic N was found in soil (0–100 cm) following spring beans. Least inorganic N remained in the soil following sugarbeet, averaging only 19 kg N ha −1 . The risk of nitrate leaching in the following winter, based on that which remained in the soil at harvest, ranked in decreasing order, was: spring beans=potatoes>oilseed rape=winter wheat>sugarbeet. On average, only 2·9% of the labelled fertilizer applied to winter wheat and oilseed rape remained in the soil (0–100 cm) as inorganic N (NO − 3 +NH + 4 ) at harvest; with sugarbeet only 1·1% remained. In most cases c . 10% of the mineral N present in the soil at this time was derived from the nitrogen fertilizer applied to arable crops in spring. However, substantially more ( c . 21%) was derived from fertilizer following harvest of winter wheat infected with take-all ( Gaeumannomyces graminis var. tritici ) and after potatoes. With winter wheat and sugarbeet, withholding fertilizer N had little effect on the total quantity of inorganic N present in the soil profile at harvest, but with oilseed rape and potatoes there was a decrease of, on average, 38 and 50%, respectively. A decrease in the amount of nitrogen applied to winter wheat and sugarbeet in spring would therefore not significantly decrease the quantity of nitrate at risk to leaching during the following autumn and winter, but may be more effective with rape and potatoes. However, if wheat growth is severely impaired by take-all, significant amounts of fertilizer-derived nitrate will remain in the soil at harvest, at risk to leaching.
Science of The Total Environment | 2012
Jennifer A. J. Dungait; Laura Cardenas; Martin Blackwell; Lianhai Wu; Paul J. A. Withers; David Chadwick; Roland Bol; Philip J. Murray; Andy Macdonald; Andrew P. Whitmore; K.W.T. Goulding
Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling.
Plant and Soil | 2005
Andy Macdonald; P. R. Poulton; M. T. Howe; K. W. T. Goulding; David S. Powlson
Field experiments were done to evaluate the extent to which cover crops can be used to help farmers comply with current legislation on nitrate leaching from arable land in nitrate vulnerable zones. Nitrate leaching was measured in sandy loam and chalky loam soils under a range of early sown (mid-August) cover crops at two sites in SE England, and in the subsequent winter following their incorporation. Cover crop species tested were forage rape, rye, white mustard, a rye/white mustard mixture, Phacelia and ryegrass. Additional treatments were weeds plus cereal volunteers, a bare fallow and a conventional winter barley crop sown one month later than the cover crops and grown to maturity. Cover crop and bare fallow treatments were followed by spring barley. This was followed by winter barley, as was the conventional winter barley crop. In the winter immediately after establishment, early sown cover crops decreased nitrate leaching by 29–91% compared to bare fallow. They were most effective in a wet winter on the sandy loam where nitrate leaching under bare fallow was greatest. There was little difference between cover crop species with respect to their capacity to decrease nitrate leaching, but losses were consistently smaller under forage rape. The growth of weeds plus cereal volunteers significantly decreased nitrate leaching on the sandy loam compared with a bare fallow, but was less effective on the chalky loam. Nitrate leaching under the later sown winter barley was often greater than under cover crops, but under dry conditions leaching losses were similar. In the longer-term, in most cases, the inclusion of cover crops in predominantly cereal-based cropping systems did not significantly decrease cumulative nitrate leaching compared with two successive winter cereals. In summary, early sown cover crops are most likely to be effective when grown on freely drained sandy soils where the risk of nitrate leaching is greatest. They are less likely to be effective on poorer drained, medium-heavy textured soils in the driest parts of SE England. In these areas the regeneration of weeds and cereal volunteers together with some additional broadcast seed may be sufficient to avoid excessive nitrate losses. In the short-term, mineralization of N derived from the relatively small cover crops grown once every 3–4 years in cereal-based cropping systems is unlikely to contribute greatly to nitrate leaching in later years and adjustments to fertilizer N recommendations will not usually be necessary.
Nature | 2015
Jonathan Storkey; Andy Macdonald; P. R. Poulton; T. Scott; I. H. Köhler; H. Schnyder; Keith Goulding; Michael J. Crawley
The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to ‘bounce back’ in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.
New Phytologist | 2016
Maïté S. Guignard; Richard A. Nichols; Robert J. Knell; Andy Macdonald; Catalina‐Andreea Romila; Ilia J. Leitch; Andrew R. Leitch
Summary Angiosperm genome sizes (GS) range c. 2400‐fold, and as nucleic acids are amongst the most phosphorus‐ (P) and nitrogen (N)‐demanding cellular biomolecules, we test the hypothesis that a key influence on plant biomass and species composition is the interaction between N and P availability and plant GS. We analysed the impact of different nutrient regimes on above‐ground biomass of angiosperm species with different GS, ploidy level and Grimes C‐S‐R (competitive, stress‐tolerant, ruderal) plant strategies growing at the Park Grass Experiment (Rothamsted, UK), established in 1856. The biomass‐weighted mean GS of species growing on plots with the addition of both N and P fertilizer were significantly higher than that of plants growing on control plots and plots with either N or P. The plants on these N + P plots are dominated by polyploids with large GS and a competitive plant strategy. The results are consistent with our hypothesis that large genomes are costly to build and maintain under N and P limitation. Hence GS and ploidy are significant traits affecting biomass growth under different nutrient regimes, influencing plant community composition and ecosystem dynamics. We propose that GS is a critical factor needed in models that bridge the knowledge gap between biodiversity and ecosystem functioning.
Soil Research | 2007
Andy Macdonald; Daniel V. Murphy; N. Mahieu; I. R. P. Fillery
Total C and N were measured in whole soils (0–0.15, 0.15–0.35, and 0.35–0.65 m), light organic matter fractions (<1 g/cm3 (LF 1.0) and 1.0–1.7 g/cm3 (LF 1.7)) in surface soils, and in leaf litter collected from a mixed grass/lucerne pasture and adjacent native bush at Moora, Western Australia. The C content of the plant material and light fractions was characterised by 13C cross-polarisation/magic angle spinning nuclear magnetic resonance (13C CP/MAS NMR) spectroscopy. Water-extractable organic C (WEOC) and N (WEON) were measured in soil, and dissolved organic C (DOC) and N (DON) were measured in soil solutions. In addition, both NO3-N and NH4-N (SMN) were measured in soil solutions and water extracts. Total soil C (0–0.65 m) did not differ significantly between land uses, but there was clear evidence of N enrichment under the pasture system, which contained significantly (P < 0.05) more total N in the surface soil (0–0.15 m) compared with that under native bush. The significantly (P < 0.05) smaller C/N ratios of the surface soil, plant litter, and light fractions (LF 1.0 and 1.7) under the pasture provided further evidence of N enrichment. The 13C CP/MAS NMR spectra for plant material and light fractions did not differ greatly between landuses, but in both cases the O-alkyl : alkyl carbon ratio declined with increasing density. The decomposition and subsequent mineralisation of the relatively N-rich organic matter fractions in the pasture system may have contributed to the significantly (P < 0.05) greater DOC, DON, and SMN concentration measured in soil solutions under pasture compared with those under native bush.
Archive | 2014
David S. Powlson; Andy Macdonald; P. R. Poulton
Long-term experiments are one vital tool for studying the impacts of agricultural management practices on soil properties and crop production; however, they have several limitations that must be recognized. Such experiments are resources for research – not museum exhibits that can never be altered. For example, in the Broadbalk Wheat Experiment (started 1843), the original large plots have been split so that additional cropping systems can be studied, in particular wheat grown in a crop rotation in addition to the original monoculture.
Global Change Biology | 2018
P. R. Poulton; Johnny Johnston; Andy Macdonald; Rodger P. White; David S. Powlson
Abstract We evaluated the “4 per 1000” initiative for increasing soil organic carbon (SOC) by analysing rates of SOC increase in treatments in 16 long‐term experiments in southeast United Kingdom. The initiative sets a goal for SOC stock to increase by 4‰ per year in the 0–40 cm soil depth, continued over 20 years. Our experiments, on three soil types, provided 114 treatment comparisons over 7–157 years. Treatments included organic additions (incorporated by inversion ploughing), N fertilizers, introducing pasture leys into continuous arable systems, and converting arable land to woodland. In 65% of cases, SOC increases occurred at >7‰ per year in the 0–23 cm depth, approximately equivalent to 4‰ per year in the 0–40 cm depth. In the two longest running experiments (>150 years), annual farmyard manure (FYM) applications at 35 t fresh material per hectare (equivalent to approx. 3.2 t organic C/ha/year) gave SOC increases of 18‰ and 43‰ per year in the 23 cm depth during the first 20 years. Increases exceeding 7‰ per year continued for 40–60 years. In other experiments, with FYM applied at lower rates or not every year, there were increases of 3‰–8‰ per year over several decades. Other treatments gave increases between zero and 19‰ per year over various periods. We conclude that there are severe limitations to achieving the “4 per 1000” goal in practical agriculture over large areas. The reasons include (1) farmers not having the necessary resources (e.g. insufficient manure); (2) some, though not all, practices favouring SOC already widely adopted; (3) practices uneconomic for farmers—potentially overcome by changes in regulations or subsidies; (4) practices undesirable for global food security. We suggest it is more realistic to promote practices for increasing SOC based on improving soil quality and functioning as small increases can have disproportionately large beneficial impacts, though not necessarily translating into increased crop yield.
European Journal of Soil Science | 2017
A. E. Johnston; P. R. Poulton; K. Coleman; Andy Macdonald; Rodger P. White
The sequestration in soil of organic carbon (SOC) derived from atmospheric carbon dioxide (CO2) by replacing arable crops with leys, has been measured over 70 years on a sandy loam soil. The experiment was designed initially to test the effect of leys on the yields of arable crops. A 3‐year grazed grass with clover (grass + clover) ley in a 5‐year rotation with arable crops increased percentage organic carbon (%OC) in the top 25 cm of the soil from 0.98 to 1.23 in 28 years, but with little further increase during the next 40 years with all‐grass leys given fertilizer nitrogen (N). In this second period, OC inputs were balanced by losses, suggesting that about 1.3% OC might be near the equilibrium content for this rotation. Including 3‐year lucerne (Medicago sativa) leys had little effect on %OC over 28 years, but after changing to grass + clover leys, %OC increased to 1.24 during the next 40 years. Eight‐year leys (all grass with N or grass + clover) in 10‐year rotations with arable crops were started in the 1970s, and after three rotations %OC had increased to ca. 1.40 in 2000–2009. Over 70 years, %OC declined from 0.98 to 0.94 in an all‐arable rotation with mainly cereals and to 0.82 with more root crops. Applications of 38 t ha−1 farmyard manure (FYM) every fifth year increased %OC by 0.13% by the mid‐1960s when applications ceased. Soil treated with FYM still contained 0.10% more OC in 2000–2009. Changes in the amount of OC have been modelled with RothC‐26.3 and estimated inputs of C for selected rotations. Little of the OC input during the 70 years has been retained; most was retained in the grazed ley rotation, but 9 t ha−1 only of a total input of 189 t ha−1. In other rotations more than 98% of the total OC input was lost. Despite large losses of C, annual increases in OC of 4‰ are possible on this soil type with the inclusion of grass or grass + clover leys or the application of FYM, but only for a limited period. Such increases in SOC might help to limit increases in atmospheric CO2. Highlights Can leys sequester significant amounts of atmospheric CO 2 in SOM and contribute to the 4‰ initiative? Changes in the percentage and amount of OC were measured and modelled over 70 years and OC losses estimated. Three‐year grass or grass + clover leys increased %OC, but only to an equilibrium level that was then maintained. Despite large losses, sequestering CO 2‐C at 4‰ year−1 by growing grass or grass + clover leys is possible.