Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andy Song is active.

Publication


Featured researches published by Andy Song.


Expert Systems With Applications | 2015

Efficient agglomerative hierarchical clustering

Athman Bouguettaya; Qi Yu; Xumin Liu; Xiangmin Zhou; Andy Song

An efficient hybrid hierarchical clustering is proposed based on agglomerative method.It performs consistently with different distance measures.It performs consistently on data with different distributions and sizes. Hierarchical clustering is of great importance in data analytics especially because of the exponential growth of real-world data. Often these data are unlabelled and there is little prior domain knowledge available. One challenge in handling these huge data collections is the computational cost. In this paper, we aim to improve the efficiency by introducing a set of methods of agglomerative hierarchical clustering. Instead of building cluster hierarchies based on raw data points, our approach builds a hierarchy based on a group of centroids. These centroids represent a group of adjacent points in the data space. By this approach, feature extraction or dimensionality reduction is not required. To evaluate our approach, we have conducted a comprehensive experimental study. We tested the approach with different clustering methods (i.e., UPGMA and SLINK), data distributions, (i.e., normal and uniform), and distance measures (i.e., Euclidean and Canberra). The experimental results indicate that, using the centroid based approach, computational cost can be significantly reduced without compromising the clustering performance. The performance of this approach is relatively consistent regardless the variation of the settings, i.e., clustering methods, data distributions, and distance measures.


australian joint conference on artificial intelligence | 2001

Towards Genetic Programming for Texture Classification

Andy Song; Thomas Loveard; Victor Ciesielski

The genetic programming (GP) method is proposed as a new approach to perform texture classification based directly on raw pixel data. Two alternative genetic programming representations are used to perform classification. These are dynamic range selection (DRS) and static range selection (SRS). This preliminary study uses four brodatz textures to investigate the applicability of the genetic programming method for binary texture classifications and multi-texture classifications.Results indicate that the genetic programming method, based directly on raw pixel data, is able to accurately classify different textures. The results show that the DRS method is well suited to the task of texture classification. The classifiers generated in our experiments by DRS have good performance over a variety of texture data and offer GP as a promising alternative approach for the difficult problem of texture classification.


congress on evolutionary computation | 2002

Texture classifiers generated by genetic programming

Andy Song; Victor Ciesielski; H.E. Williams

We investigate the behaviour of image texture classifiers generated by genetic programming. We propose techniques to understand how classifiers capture textural characteristics and for discussing the effectiveness of different classifiers. Our results show that regularities of patterns can be detected by the genetic programming method without predefined knowledge.


electronic commerce | 2008

Texture segmentation by genetic programming

Andy Song; Victor Ciesielski

This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.


congress on evolutionary computation | 2004

Texture analysis by genetic programming

Andy Song; Victor Ciesielski

This work presents the use of genetic programming (GP) to a complex domain, texture analysis. Two major tasks of texture analysis, texture classification and texture segmentation, are studied. Bitmap textures are used in this investigation. In classification tasks, the results show that GP is able to evolve accurate classifiers based on texture features. Moreover by using the presented method, GP is able to evolve accurate classifiers without extracting texture features. In texture segmentation tasks, the investigation shows that a fast and accurate segmentation method can be developed based on GP generated texture classifiers. Our further investigation show that the accuracies are not achieved by chance. There are regularities been captured by GP-generated classifiers in performing texture discrimination.


Expert Systems With Applications | 2012

Two-Tier genetic programming: towards raw pixel-based image classification

Harith Al-Sahaf; Andy Song; Kourosh Neshatian; Mengjie Zhang

Classifying images is of great importance in machine vision and image analysis applications such as object recognition and face detection. Conventional methods build classifiers based on certain types of image features instead of raw pixels because the dimensionality of raw inputs is often too large. Determining an optimal set of features for a particular task is usually the focus of conventional image classification methods. In this study we propose a Genetic Programming (GP) method by which raw images can be directly fed as the classification inputs. It is named as Two-Tier GP as every classifier evolved by it has two tiers, the other for computing features based on raw pixel input, one for making decisions. Relevant features are expected to be self-constructed by GP along the evolutionary process. This method is compared with feature based image classification by GP and another GP method which also aims to automatically extract image features. Four different classification tasks are used in the comparison, and the results show that the highest accuracies are achieved by Two-Tier GP. Further analysis on the evolved solutions reveals that there are genuine features formulated by the evolved solutions which can classify target images accurately.


congress on evolutionary computation | 2003

Fast texture segmentation using genetic programming

Andy Song; Vic Ciesielski

This paper presents a method which extends the use of genetic programming (GP) to a complex domain, texture segmentation. By this method, segmentation tasks are performed by texture classifiers which are evolved by the GP. Small cutouts sampled from images of various textures are used for the evolution. The generated classifiers directly use pixel values as input. Based on these classifiers an algorithm which uses a voting strategy to partition texture regions is developed. The results of the investigation indicate that the proposed method is able to accurately identify the boundaries between different texture regions, even if the boundaries are not regular. The method can segment two textures as well as multiple textures. Furthermore, fast segmentation can be achieved. The speed of the proposed texture segmentation method can be a hundred times faster than conventional methods.


congress on evolutionary computation | 2004

Multiobjective parsimony enforcement for superior generalisation performance

Yaniv Bernstein; Xiaodong Li; Victor Ciesielski; Andy Song

Program Bloat - phenomenon of ever-increasing program size during a GP run - is a recognised and widespread problem. Traditional techniques to combat program bloat are program size limitations of parsimony pressure (penalty functions). These techniques suffer from a number of problems, in particular their reliance on parameters whose optimal values it is difficult to a priori determine. In this paper, we introduce POPE-GP, a system that makes use of the NSGA-II multiobjective evolutionary algorithm as an alternative, parameter-free technique for eliminating program bloat. We test it on a classification problem and find that while vastly reducing program size, it does improve generalisation performance.


congress on evolutionary computation | 2012

Extracting image features for classification by two-tier genetic programming

Harith Al-Sahaf; Andy Song; Kourosh Neshatian; Mengjie Zhang

Image classification is a complex but important task especially in the areas of machine vision and image analysis such as remote sensing and face recognition. One of the challenges in image classification is finding an optimal set of features for a particular task because the choice of features has direct impact on the classification performance. However the goodness of a feature is highly problem dependent and often domain knowledge is required. To address these issues we introduce a Genetic Programming (GP) based image classification method, Two-Tier GP, which directly operates on raw pixels rather than features. The first tier in a classifier is for automatically defining features based on raw image input, while the second tier makes decision. Compared to conventional feature based image classification methods, Two-Tier GP achieved better accuracies on a range of different tasks. Furthermore by using the features defined by the first tier of these Two-Tier GP classifiers, conventional classification methods obtained higher accuracies than classifying on manually designed features. Analysis on evolved Two-Tier image classifiers shows that there are genuine features captured in the programs and the mechanism of achieving high accuracy can be revealed. The Two-Tier GP method has clear advantages in image classification, such as high accuracy, good interpretability and the removal of explicit feature extraction process.


genetic and evolutionary computation conference | 2008

Robust method of detecting moving objects in videos evolved by genetic programming

Andy Song; Danny Fang

In this paper we investigated the use of Genetic Programming (GP) to evolve programs which could detect moving objects in videos. Two main approaches under the paradigm were proposed and investigated, single-frame approach and multi-frame approach. The former is based on analyzing individual video frames and treat them independently while the latter approach consider a sequence of frames. In the single-frame approach, three methods are investigated including using pixel intensity, pixel hue value and feature values. The experiments on Robosoccer field show that GP could detect the target under different lighting conditions and could even handle arbitrary camera positions. Although there was no domain knowledge had been provided during evolution, GP was able to produce moving object detectors that were robust and fast.

Collaboration


Dive into the Andy Song's collaboration.

Top Co-Authors

Avatar

Nasser R. Sabar

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengjie Zhang

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Mei

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge