Ane Garate
Ciber
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ane Garate.
Molecular Pharmaceutics | 2015
Ane Garate; Jesús Ciriza; Javier G. Casado; Rebeca Blázquez; José Luis Pedraz; Gorka Orive; Rosa María Hernández
The combination of mesenchymal stem cells (MSCs) and biomimetic matrices for cell-based therapies has led to enormous advances, including the field of cell microencapsulation technology. In the present work, we have evaluated the potential of genetically modified MSCs from mice bone marrow, D1-MSCs, immobilized in alginate microcapsules with different RGD (Arg-Gly-Asp) densities. Results demonstrated that the microcapsules represent a suitable platform for D1-MSC encapsulation since cell immobilization into alginate matrices does not affect their main characteristics. The in vitro study showed a higher activity of D1-MSCs when they are immobilized in RGD-modified alginate microcapsules, obtaining the highest therapeutic factor secretion with low and intermediate densities of the bioactive molecule. In addition, the inclusion of RGD increased the differentiation potential of immobilized cells upon specific induction. However, subcutaneous implantation did not induce differentiation of D1-MSCs toward any lineage remaining at an undifferentiated state in vivo.
Journal of Biomedical Materials Research Part A | 2014
Edorta Santos; Ane Garate; José Luis Pedraz; Gorka Orive; Rosa María Hernández
The inclusion of the tripeptide RGD (Arg-Gly-Asp) in otherwise inert biomaterials employed for cell encapsulation has been observed to be an effective strategy to provide the immobilized cells with a more suitable microenvironment. However, some controversial results collected during the last years, especially in vivo, have questioned its effectiveness. Here, we have studied the behavior of C2 C12 myoblasts immobilized in alginate-poly-l-lysine-alginate microcapsules with different densities of RGD. The use of these microcapsules offer the advantage of avoiding native proteins influence permitting to establish direct comparisons between in vitro and in vivo assays. The results suggest that RGD-modified matrices provide higher dynamism, achieving therapeutically more active biosystems not only in vitro, but also in vivo. The highest functionality of the immobilized cells in vitro was obtained with the lowest RGD density. However, higher RGD densities were required in vivo to obtain the same effects observed in vitro. Altogether, these results suggest the lack of in vitro-in vivo correlation when cell behavior is evaluated within different RGD-tailored cell-loaded scaffolds.
Journal of Drug Targeting | 2015
Ane Garate; Edorta Santos; José Luis Pedraz; Rosa María Hernández; Gorka Orive
Abstract Background: The inclusion of the tripeptide Arg-Gly-Asp (RGD) in otherwise inert biomaterials employed for cell encapsulation has been observed to be an effective strategy to provide the immobilized cells with a more suitable microenvironment. Purpose: The objective of this study was to determine the impact of different RGD densities on the behavior of baby hamster kidney (BHK) fibroblasts able to secrete vascular endothelial growth factor (VEGF) encapsulated in alginate microcapsules. Methods: Alginate was modified by varying the concentration of RGD peptides in the coupling reaction. After obtaining four different types of alginate, cells were encapsulated in alginate-poly-l-lysine-alginate (APA) microcapsules. Results and discussion: The results obtained after viability, cell proliferation and VEGF secretion assays showed that the inclusion of RGD in alginate enhances the functionality of immobilized cells, obtaining the highest values with the intermediate RGD density. Conclusion: These results put in evidence that alginate modification influences the behavior of immobilized cells but even more that the employed density of the tripeptide is of crucial importance, obtaining in some cases even excessive activity of the encapsulated cells.
Scientific Reports | 2017
Haritz Gurruchaga; Laura Saenz del Burgo; Ane Garate; Diego Delgado; Pello Sánchez; Gorka Orive; Jesús Ciriza; Mikel Sánchez; José Luis Pedraz
Transplantation of mesenchymal stem cells (MSCs) has emerged as an alternative strategy to treat knee osteoarthritis. In this context, MSCs derived from synovial fluid could provide higher chondrogenic and cartilage regeneration, presenting synovial fluid as an appropriate MSCs source. An allogeneic and biomimetic bioscaffold composed of Platelet Rich Plasma and synovial fluid that preserve and mimics the natural environment of MSCs isolated from knee has also been developed. We have optimized the cryopreservation of knee-isolated MSCs embedded within the aforementioned biomimetic scaffold, in order to create a reserve of young autologous embedded knee MSCs for future clinical applications. We have tested several cryoprotectant solutions combining dimethyl sulfoxide (DMSO), sucrose and human serum and quantifying the viability and functionality of the embedded MSCs after thawing. MSCs embedded in bioscaffolds cryopreserved with DMSO 10% or the combination of DMSO 10% and Sucrose 0,2 M displayed the best cell viabilities maintaining the multilineage differentiation potential of MSCs after thawing. In conclusion, embedded young MSCs within allogeneic biomimetic bioscaffold can be cryopreserved with the cryoprotectant solutions described in this work, allowing their future clinical use in patients with cartilage defects.
Journal of Biomedical Materials Research Part A | 2018
Ane Garate; Pello Sánchez; Diego Delgado; Ane Miren Bilbao; Emma Muiños-López; Froilán Granero-Moltó; Gorka Orive; Felipe Prosper; José Luis Pedraz; Mikel Sánchez
In the field of tissue engineering, diverse types of bioscaffolds are being developed currently for osteochondral defect applications. In this work, a novel scaffold based on platelet rich plasma (PRP) and hyaluronic acid with mesenchymal stem cells (MSCs) has been evaluated to observe its effect on immobilized cells. The bioscaffolds were prepared by mixing different volumes of synovial fluid (SF) with PRP from patients obtaining three formulations at PRP-SF ratios of 3:1, 1:1 and 1:3 (v/v). The live/dead staining revealed that although the cell number of each type of bioscaffold was different, these this constructs provide cells with a suitable environment for their viability and proliferation. Moreover, immobilized MSCs showed their ability to secrete fibrinolytic enzymes, which vary depending on the fibrin amount of the scaffold. Immunohistochemical analysis revealed the positive staining for collagen type II in all cases, proving the biologic action of SF derived MSCs together with the suitable characteristics of the bioscaffold for chondrogenic differentiation. Considering all these aspects, this study demonstrates that these cells-based constructs represent an attractive method for cell immobilization, achieving completely autologous and biocompatible scaffolds.
Cartilage | 2018
Mikel Sánchez; Diego Delgado; Orlando Pompei; Juan Carlos Pérez; Pello Sánchez; Ane Garate; Ane Miren Bilbao; Nicolás Fiz; Sabino Padilla
Objective Assessing the therapeutic effects of a combination of intra-articular and intra-osseous infiltrations of platelet-rich plasma (PRP) to treat severe knee osteoarthritis (KOA) using intra-articular injections of PRP as the control group. Design In this observational study, 60 patients suffering from severe KOA were treated with intra-articular infiltrations of PRP (IA group) or with a combination of intra-osseous and intra-articular infiltrations of PRP (IO group). Both groups were matched for sex, age, body mass index, and radiographic severity (III and IV degree according to Ahlbäck scale). Clinical outcome was evaluated at 2, 6, and 12 months, using the Knee injury and Osteoarthritis Outcome Score (KOOS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaires. Results At 2, 6 and 12 months after treatment, IO group had a significant improvement in all KOOS and WOMAC subscales (P < 0.05). On the contrary, patients of the IA group did not improve in any of the scores. Sixteen out of 30 IO group patients showed minimal clinically important improvement (MCII) whereas 8 out of 30 IA group patients showed this response at 6 months (26.7%; 95% CI −0.4 to 49.9; P = 0.037). At 12 months, 14 patients of IO group and 5 patients of the IA group showed MCII (30%; 95% CI 4.3 to 51.9; P = 0.013). No differences between groups were observed at 2 months. Conclusions PRP intra-articular injections in severe KOA were not effective and did not provide any benefit. Combination of intra-articular and intra-osseous infiltrations of PRP was not clinically superior at 2 months, but it showed superior clinical outcomes at 6 and 12 months when compared with intra-articular injections of PRP.
Journal of clinical orthopaedics and trauma | 2018
Diego Delgado; Ane Garate; Hunter Vincent; Ane Miren Bilbao; Rikin Patel; Nicolás Fiz; Steve Sampson; Mikel Sánchez
Knee osteoarthritis (OA) is a degenerative process that slowly destroys the joints producing pain and loss of function, and diminishes the quality of life. Current treatments alleviate this symptomatology but do not stop the disease, being total knee arthroplasty the only definitive solution. Among the emerging treatments, Platelet-Rich Plasma (PRP) has shown promising results in the treatment of OA. However, to improve its effectiveness, it is necessary to approach this pathology targeting the whole joint, not only the cartilage, but including other tissues such as subchondral bone. The pathological processes that occur in the subchondral bone have influence of the cartilage loss, aggravating the disease. The combination of intraarticular infiltrations with intraosseous infiltrations regulates the biological processes of the tissues, reducing the inflammatory environment and modulating the overexpression of biomolecules that generate an aberrant cellular behavior. Although the first clinical results using this technique are promising, further research and developing adequate protocols are necessary to achieve good clinical results.
Therapeutic Delivery | 2012
Ane Garate; Ainhoa Murua; Gorka Orive; Rosa María Hernández; José Luis Pedraz
Archive | 2018
Mikel Sánchez; Diego Delgado; Ane Garate; Pello Sánchez; JaimeOraa; Ane Miren Bilbao; Jorge Guadilla; Beatriz Aizpurua; NicolásFiz; Juan Azofra; Sabino Padilla
EKAIA Euskal Herriko Unibertsitateko Zientzi eta Teknologi Aldizkaria | 2015
Francisco Javier Olea; Amaia Elgezabal; Lourdes Solozabal; Aitziber Mendizabal; Jon Zarate; Manoli Igartua; Amaia Esquisabel; Gorka Orive; Gustavo Puras; Marta Pastor; Aiala Salvador; Edorta Santos; Jesús Ciriza; Laura Saenz del Burgo; Enara Herran; Argia Akarregi; Garazi Gainza; Mireia Agirre; Edilberto Ojeda; Ane Garate; Oihane Gartziandia