Aneta A. Ptaszyńska
Maria Curie-Skłodowska University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aneta A. Ptaszyńska.
Fems Microbiology Letters | 2014
Aneta A. Ptaszyńska; Grzegorz Borsuk; Grzegorz Woźniakowski; Sebastian Gnat; Wanda Małek
Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae.
Journal of Insect Science | 2012
Aneta A. Ptaszyńska; Jacek Łętowski; Sebastian Gnat; Wanda Małek
Abstract The systematics of the family Apionidae, as well as the superfamily Curculionoidea, is currently in a state of flux. The comparative analyses of COI sequences from our studies shed some light on the systematics of these weevils. To study the relationship among the organisms of the family Apionidae, we determined the COI sequences of representatives of 23 species and 15 genera, i.e., Apion, Betulapion, Catapion, Ceratapion, Cyanapion, Eutrichapion, Exapion, Hemitrichapion, Holotrichapion, Ischnopterapion, Protapion, Pseudoperapion, Psudoprotapion, Pseudostenapion, and Stenopterapion. Then, they were compared with the COI sequences of 19 species and eight genera from GenBank (Aspidapion, Ceratapion, Exapion, Ischnopterapion, Lepidapion, Omphalapion, Oxystoma, and Protapion). The phylogenetic relationships inferred from molecular data are similar to the classification system developed by Alonso-Zarazaga and Lyal (1999), with some exceptions within the tribe Oxystomatini, and genera Ceratapion and Exapion.
PLOS ONE | 2016
Aneta A. Ptaszyńska; Jerzy Paleolog; Grzegorz Borsuk
Background Nosema ceranae infection not only damages honey bee (Apis melifera) intestines, but we believe it may also affect intestinal yeast development and its seasonal pattern. In order to check our hypothesis, infection intensity versus intestinal yeast colony forming units (CFU) both in field and cage experiments were studied. Methods/Findings Field tests were carried out from March to October in 2014 and 2015. N. ceranae infection intensity decreased more than 100 times from 7.6 x 108 in March to 5.8 x 106 in October 2014. A similar tendency was observed in 2015. Therefore, in the European eastern limit of its range, N. ceranae infection intensity showed seasonality (spring peak and subsequent decline in the summer and fall), however, with an additional mid-summer peak that had not been recorded in other studies. Due to seasonal changes in the N. ceranae infection intensity observed in honey bee colonies, we recommend performing studies on new therapeutics during two consecutive years, including colony overwintering. A natural decrease in N. ceranae spore numbers observed from March to October might be misinterpreted as an effect of Nosema spp. treatment with new compounds. A similar seasonal pattern was observed for intestinal yeast population size in field experiments. Furthermore, cage experiments confirmed the size of intestinal yeast population to increase markedly together with the increase in the N. ceranae infection intensity. Yeast CFUs amounted to respectively 2,025 (CV = 13.04) and 11,150 (CV = 14.06) in uninfected and N. ceranae-infected workers at the end of cage experiments. Therefore, honey bee infection with N. ceranae supported additional opportunistic yeast infections, which may have resulted in faster colony depopulations.
Scientific Reports | 2018
Aneta A. Ptaszyńska; Mariusz Trytek; Grzegorz Borsuk; Katarzyna Buczek; Katarzyna Rybicka-Jasińska; Dorota Gryko
The study of organic/inorganic molecules with activity against intracellular fungi of the phylum Microsporidia is of critical importance. Here, for the first time, the inactivation of these parasitic fungi by porphyrins is reported. The biological effects of porphyrins (10 µM and 100 µM) on the microsporidian Nosema ceranae was investigated in honeybee hosts using cage experiments. A significant reduction in the number of spores (from 2.6 to 5 fold) was observed in Nosema-infected honeybees with a sucrose-protoporphyrin amide [PP(Asp)2] syrup diet compared to the control honeybees. PP(Asp)2 and the other porphyrin examined in vitro, TMePyP, had a direct impact on the microsporidia. Notably, neither porphyrin requires light excitation to be active against microsporidia. Moreover, microsporidia preincubated with these porphyrins exhibited decreased ability to infect honeybees. In particular, PP(Asp)2, possessing amphiphilic characteristics, exhibited significant inactivation of microsporidia, preventing the development of the microsporidia and diminishing the mortality of infected honeybees. In addition, the porphyrin-treated spores examined by scanning electron microscopy (SEM) showed morphological changes in their exosporium layers, which were distinctly deformed. Thus, we postulate that the mechanism of action of porphyrins on microsporidia is not based on photodynamic inactivation but on the destruction of the cell walls of the spores.
PLOS ONE | 2018
Aneta A. Ptaszyńska; Marek Gancarz; Paul J. Hurd; Grzegorz Borsuk; Dariusz Wiącek; Agnieszka Nawrocka; Aneta Strachecka; Daniel Załuski; Jerzy Paleolog
Proper bioelement content is crucial for the health and wellness of all organisms, including honeybees. However, the situation is more complicated in these important pollinators due to the fact that they change their physiology during winter in order to survive the relatively harsh climatic conditions. Additionally, honeybees are susceptible to many diseases such as nosemosis, which during winter can depopulate an entire colony. Here we show that summer bees have a markedly higher content of important bioelements such as: Al, Cu, P, V, (physiologically essential); Ca, K, Mg, (electrolytic); Cr, Se, Zn, (enzymatic); As, Hg, (toxic). In contrast, a markedly higher content of: Fe (physiologically essential); Mn, Ni, (enzymatic); Cd (exclusively toxic) were present in winter bees. Importantly, N. ceranae infection resulted in an increased honeybee bioelement content of: S, Sr (physiologically essential) and Pb (exclusively toxic), whereas the Nosema-free worker-bees had higher amounts of B and Si (physiologically essential). We propose that the shortages of Fe, Mn, Ni, and Na observed in Nosema-infected bees, could be the reason for the higher mortality of Nosema-infected bees throughout overwintering. In addition, a shortage of bioelements such as B and Si may be a reason for accelerated aging in foragers that is observed following N. ceranae infection. Therefore, in winter, bioelement content was more strongly affected by N. ceranae infection than during summer. We found a strong correlation between the bioelement content of bees and seasons (summer or winter) and also with Nosema infection. We conclude that the balance of bioelements in the honeybee is altered by both seasonal affects and by Nosema infection.
Journal of Applied Genetics | 2018
Artur Pachla; Magdalena Wicha; Aneta A. Ptaszyńska; Grzegorz Borsuk; Łucja Łaniewska –Trokenheim; Wanda Małek
This paper describes taxonomic position, phylogeny, and phenotypic properties of 14 lactic acid bacteria (LAB) originating from an Apis mellifera guts. Based on the 16S rDNA and recA gene sequence analyses, 12 lactic acid bacteria were assigned to Lactobacillus kunkeei and two others were classified as Fructobacillus fructosus. Biochemically, all isolated lactic acid bacteria showed typical fructophilic features and under anaerobic conditions grew well on fructose, but poorly on glucose. Fast growth of bacteria on glucose was noted in the presence of oxygen or fructose as external electron acceptors. The residents of honeybee guts were classified as heterofermentative lactic acid bacteria. From glucose, they produced almost equimolar amounts of lactic acid, acetic acid, and trace amounts of ethanol. Furthermore, they inhibited the growth of the major honeybee pathogen, Paenibacillus larvae, meaning that the LAB studied may have the health-conferring properties of probiotics.
PLOS ONE | 2017
Grzegorz Borsuk; Aneta A. Ptaszyńska; Krzysztof Olszewski; Marcin Domaciuk; Patcharin Krutmuang; Jerzy Paleolog
Bio-analysis of insects is increasingly dependent on highly sensitive methods that require high quality biological material, such as hemolymph. However, it is difficult to collect fresh and uncontaminated hemolymph from adult bees since they are very active and have the potential to sting, and because hemolymph is rapidly melanized. Here we aimed to develop and test a quick and easy method for sterile and contamination-free hemolymph sampling from adult Apidae. Our novel antennae method for hemolymph sampling (AMHS), entailed the detachment of an antenna, followed by application of delicate pressure to the bees abdomen. This resulted in the appearance of a drop of hemolymph at the base of the detached antenna, which was then aspirated using an automatic pipetter. Larger insect size corresponded to easier and faster hemolymph sampling, and to a greater sample volume. We obtained 80–100 μL of sterile non-melanized hemolymph in 1 minute from one Bombus terrestris worker, in 6 minutes from 10 Apis mellifera workers, and in 15 minutes from 18 Apis cerana workers (+/−0.5 minutes). Compared to the most popular method of hemolymph collection, in which hemolymph is sampled by puncturing the dorsal sinus of the thorax with a capillary (TCHS), significantly fewer bees were required to collect 80–100 μL hemolymph using our novel AMHS method. Moreover, the time required for hemolymph collection was significantly shorter using the AMHS compared to the TCHS, which protects the acquired hemolymph against melanization, thus providing the highest quality material for biological analysis.
Micron | 2014
Kinga Lewtak; Marta J. Fiołka; Ewa Szczuka; Aneta A. Ptaszyńska; Natalia Kotowicz; Przemysław Kołodziej; Jolanta Rzymowska
The extract from Pelargonium zonale stalks exhibits activity against Candida albicans and exerts an effect on the HeLa cell line. The action against C. albicans cells was analysed using light, CLSM, SEM, and TEM microscopes. The observations indicate that the extract influenced fungal cell morphology and cell metabolic activity. The morphological changes include cell wall damage, deformations of cell surfaces, and abnormalities in fungal cell shape and size. Cells of C. albicans treated with the extract exhibited disturbances in the budding pattern and a tendency to form agglomerates and multicellular chains. The P. zonale extract caused a significant decrease in the metabolic activity of C. albicans cells. Cells died via both apoptosis and necrosis. The antitumor activity of the extract was analysed using the MTT assay. The P. zonale extract exhibited minor cytotoxicity against the HeLa cell line but a dose-dependent cytopathic effect was noticed. The P. zonale extract is a promising source for the isolation of antifungal and anticancer compounds.
Parasitology Research | 2016
Aneta A. Ptaszyńska; Grzegorz Borsuk; Agnieszka Zdybicka-Barabas; Małgorzata Cytryńska; Wanda Małek
Journal of Invertebrate Pathology | 2005
Marta J. Fiołka; Aneta A. Ptaszyńska; Wojciech Czarniawski