Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aneta Radziwon-Balicka is active.

Publication


Featured researches published by Aneta Radziwon-Balicka.


Carcinogenesis | 2014

Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway

Aneta Radziwon-Balicka; Maria Jose Santos-Martinez; J. Jose Corbalan; Shane O’Sullivan; Achim Treumann; John F. Gilmer; Marek W. Radomski; Carlos Medina

Platelets have been implicated in colon cancer metastasis and prognosis but the underlying molecular mechanisms remain unclear. We evaluated the role of the different mitogen-activated protein kinase (MAPK) pathways in platelet-stimulated matrix metalloproteinase-9 (MMP-9) generation and colon cancer invasion. In addition, proteins released during platelet-tumour cell interactions were studied. For this purpose, interactions of Caco-2 and HT29 cells with platelets were studied using scanning electron microscopy, aggregometry, flow cytometry and cell invasion chambers. Quantitative PCR and zymography were used to study MMP-9 gene expression and activity, respectively, whereas western blot was used to study p38MAPK. Finally, the origin of proteins during platelet-cancer cell interactions was investigated using stable isotope labelling by amino acids in cell culture (SILAC)-based proteomics. We found that platelets promoted p38MAPK phosphorylation and MMP-9 up-regulation in both cell lines, with the subsequent cell-invasion-promoting effects. Pharmacological inhibition of p38MAPK led to a significant down-regulation of MMP-9 and colon cancer cell invasiveness. Also, p38MAPK-small interfering RNA abolished the induction of platelet-stimulated MMP-9. SILAC experiments demonstrated that thrombospondin 1 (TSP1) was released mainly from platelets and clusterin by both platelets and cancer cells. Finally, inhibition of TSP1 and clusterin abolished p38MAPK phosphorylation, MMP-9 activity and platelet-stimulated colon cancer invasion. Our results indicate that platelet-secreted TSP1 and clusterin promote the signal regulation of MMP-9 in platelet-induced colonic cancer invasion via a P38MAPK-regulated pathway. These findings are relevant to the development of therapeutic approaches to preventing and reducing tumour cell metastasis induced by colon adenocarcinoma.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Hypoxia Results in Upregulation and De Novo Activation of Von Willebrand Factor Expression in Lung Endothelial Cells

Anahita Mojiri; Maryam Nakhaii-Nejad; Wei-Lee Phan; Stephen C. Kulak; Aneta Radziwon-Balicka; Paul Jurasz; Evangelos D. Michelakis; Nadia Jahroudi

Objective—Increased von Willebrand factor (VWF) levels in lungs are associated with diseases such as pulmonary hypertension. The objective of our study was to determine the mechanism of increased VWF levels in conditions, such as hypoxia, which contribute to pulmonary hypertension. Approach and Results—We have previously reported generation of transgenic mice that express LacZ transgene under the regulation of lung- and brain-specific transcriptional regulatory elements of the VWF gene. Hypoxia exposure of these transgenic mice resulted in increased VWF and LacZ mRNA levels as well as redistribution of their expression from primarily larger vessels in the lungs to microvessels. Exposure of cultured lung microvascular endothelial cells to hypoxia demonstrated that VWF upregulation was accompanied by increased platelet binding. Transcription upregulation was mediated through inhibition of the repressor nuclear factor-IB association with the VWF promoter, and increased nuclear translocation of the transcription factor YY1 and association with its cognate binding site on the VWF gene. Knockdown of YY1 expression abolished the hypoxia-induced upregulation and reduced basal level of VWF. Conclusions—These analyses demonstrate that hypoxia induces a phenotypic shift, accompanied by modulation of nuclear factor-IB and YY1 activities, in microvascular endothelial cells of the lungs to support VWF promoter activation.


Seminars in Oncology | 2014

Pharmacological regulation of platelet factors that influence tumor angiogenesis.

MengJie Yan; Gabriela Lesyk; Aneta Radziwon-Balicka; Paul Jurasz

In addition to maintaining hemostasis, platelets play an important pathological role driving tumor growth and metastasis. One mechanism by which platelets contribute to tumor growth and metastasis is their potent promotion of angiogenesis. This is accomplished in large part by the numerous factors stored, generated, and released by platelets that have the potential to influence every stage of angiogenesis. In this review, we provide an overview of the many platelet-secreted pro- and anti-angiogenic factors. We examine the basic science and clinical evidence supporting their contributions to tumor angiogenesis. Finally, we review the pharmacological regulation of their release from platelets and discuss the potential of anti-platelet drugs as adjuvant anti-angiogenesis therapy.


PLOS ONE | 2013

Temporal and Pharmacological Characterization of Angiostatin Release and Generation by Human Platelets: Implications for Endothelial Cell Migration

Aneta Radziwon-Balicka; Cesar Moncada de la Rosa; Barbara Zielnik; Adrian Doroszko; Paul Jurasz

Platelets play an important role in thrombosis and in neo-vascularisation as they release and produce factors that both promote and suppress angiogenesis. Amongst these factors is the angiogenesis inhibitor angiostatin, which is released during thrombus formation. The impact of anti-thrombotic agents and the kinetics of platelet angiostatin release are unknown. Hence, our objectives were to characterize platelet angiostatin release temporally and pharmacologically and to determine how angiostatin release influences endothelial cell migration, an early stage of angiogenesis. We hypothesized anti-platelet agents would suppress angiostatin release but not generation by platelets. Human platelets were aggregated and temporal angiostatin release was compared to vascular endothelial growth factor (VEGF). Immuno-gold electron microscopy and immunofluorescence microscopy identified α-granules as storage organelles of platelet angiostatin. Acetylsalicylic acid, MRS2395, GPIIb/IIIa blocking peptide, and aprotinin were used to characterize platelet angiostatin release and generation. An endothelial cell migration assay was performed under hypoxic conditions to determine the effects of pharmacological platelet and angiostatin inhibition. Compared to VEGF, angiostatin generation and release from α-granules occurred later temporally during platelet aggregation. Consequently, collagen-activated platelet releasates stimulated endothelial cell migration more potently than maximally-aggregated platelets. Platelet inhibitors prostacyclin, S-nitroso-glutathione, acetylsalicylic acid, and GPIIb/IIIa blocking peptide, but not a P2Y12 inhibitor, suppressed angiostatin release but not generation. Suppression of angiostatin generation in the presence of acetylsalicylic acid enhanced platelet-stimulated endothelial migration. Hence, the temporal and pharmacological modulation of platelet angiostatin release may have significant consequences for neo-vascularization following thrombus formation.


Vascular Pharmacology | 2013

Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: A hypoxia specific mechanism of action

Aneta Radziwon-Balicka; Corey Ramer; Cesar Moncada de la Rosa; Barbara Zielnik-Drabik; Paul Jurasz

Angiostatin is an angiogenesis inhibitor in part generated by and released from platelets. Since platelets upon thrombus formation can give rise to areas of hypoxia, we investigated the effects of angiostatin on endothelial cell migration and apoptosis during hypoxia. Human microvascular endothelial cells (HMVEC-L) were exposed to angiostatin under normoxic or hypoxic conditions. Apoptosis was measured by flow-cytometry. HMVEC-L migration was studied using a modified Boyden Chamber assay, in which migration is MMP-dependent. MMP-2, MMP-14, and VEGF levels were measured using immunoblot, Q-PCR and ELISA. During hypoxia HMVEC-L were protected from angiostatin-induced apoptosis due to increased hypoxia-induced VEGF expression. However, MMP-dependent migration of HMVEC-L was inhibited by angiostatin under hypoxic but not normoxic conditions. Angiostatin decreased MMP-2 at the gene and protein levels only in HMVEC-L exposed to hypoxia. A similar result was obtained for MMP-14. Higher angiostatin concentrations, as would be seen during thrombosis, induced HMVEC-L apoptosis, which was not rescued by VEGF. Under hypoxic conditions angiostatins primary anti-angiogenic mechanism is likely inhibition of endothelial cell MMP-dependent endothelial cell migration. Only at higher concentrations does angiostatin induce endothelial cell death. This study identifies a novel angiostatin anti-angiogenesis mechanism that is only triggered under pathological-like conditions.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacologic Protein Kinase Cα Inhibition Uncouples Human Platelet-Stimulated Angiogenesis from Collagen-Induced Aggregation

Cesar Moncada de la Rosa; Aneta Radziwon-Balicka; Haitham El-Sikhry; John M. Seubert; Peter P. Ruvolo; Marek W. Radomski; Paul Jurasz

Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothesized that selective PKCα inhibition may preferentially suppress angiogenesis-regulator secretion from α-granules but not aggregation, limiting platelet-stimulated angiogenesis. Human platelets were aggregated in the presence of conventional PKC inhibitors myr-FARKGALRQ and Ro 32-0432 (2-{8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyridol[1,2-α]indol-3-yl}-3-(1-methyl-1H-indol-3-yl)maleimide). Immunofluorescence microscopy of PKC translocation was used to determine the specificity of PKC-inhibitor targeting. Enzyme-linked immunosorbent assay was used to measure vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) release from platelets. Platelet effects on angiogenesis were tested using a capillary-formation assay. Ro 32-0432, but not the peptide inhibitor myr-FARKGALRQ (myristoylated-pseudosubstrate peptide inhibitor), inhibited aggregation in a concentration-dependent manner, while both Ro 32-0432 and myr-FARKGALRQ preferentially suppressed VEGF over TSP-1 secretion. Suppression of angiogenesis-regulator release occurred at inhibitor concentrations that did not significantly affect aggregation. Immunofluorescence microscopy revealed that PKCα targeting to α-granules is inhibited when angiogenesis-regulator secretion is uncoupled from aggregation. At concentrations that uncoupled α-granule release from aggregation, Ro 32-0432 and myr-FARKGALRQ inhibited platelet-stimulated angiogenesis. Hence, selective PKCα inhibition suppresses angiogenesis-regulator release from platelet α-granules with minimal effects on aggregation. Thus, selective PKCα inhibitors may have pharmacologic significance to regulate platelet-promoted angiogenesis.


Cancers | 2017

STAT3 but Not HIF-1α Is Important in Mediating Hypoxia-Induced Chemoresistance in MDA-MB-231, a Triple Negative Breast Cancer Cell Line

Hoda Soleymani Abyaneh; Nidhi Gupta; Aneta Radziwon-Balicka; Paul Jurasz; John M. Seubert; Raymond Lai; Afsaneh Lavasanifar

Hypoxia-induced chemoresistance (HICR) is a well-recognized phenomenon, and in many experimental models, hypoxia inducible factor-1α (HIF-1α) is believed to be a key player. We aimed to better understand the mechanism underlying HICR in a triple negative breast cancer cell line, MDA-MB-231, with a focus on the role of HIF-1α. In this context, the effect of hypoxia on the sensitivity of MDA-MB-231 cells to cisplatin and their stem-like features was evaluated and the role of HIF-1α in both phenomena was assessed. Our results showed that hypoxia significantly increased MDA-MB-231 resistance to cisplatin. Correlating with this, intracellular uptake of cisplatin was significantly reduced under hypoxia. Furthermore, the stem-like features of MDA-MB-231 cells increased as evidenced by the significant increases in the expression of ATP-binding cassette (ABC) drug transporters, the proportion of CD44+/CD24− cells, clonogenic survival and cisplatin chemoresistance. Under hypoxia, both the protein level and DNA binding of HIF-1α was dramatically increased. Surprisingly, siRNA knockdown of HIF-1α did not result in an appreciable change to HICR. Instead, signal transducer and activator of transcription 3 (STAT3) activation was found to be important. STAT3 activation may confer HICR by upregulating ABC transporters, particularly ABCC2 and ABCC6. This study has demonstrated that, in MDA-MB-231 cells, STAT3 rather than HIF-1α is important in mediating HICR to cisplatin.


Experimental Eye Research | 2017

Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina

Frank W. Blixt; Aneta Radziwon-Balicka; Lars Edvinsson; Karin Warfvinge

ABSTRACT Calcitonin gene‐related peptide (CGRP) is a 37 amino acid neuropeptide with several functions including vasodilation, the perception of painful stimuli, and inflammation. The CGRP receptor consists of two main components; calcitonin‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). While there is a growing recognition that CGRP plays a key role in migraine, the function of CGRP in the retina has not been fully established. This study aims to investigate the distribution of CGRP and its two receptor components in the rat retina, visually by immunohistochemistry and quantitatively using flow cytometry. CGRP immunoreactivity was found in the Müller cells while CLR/RAMP1 was located in the nerve fiber layer. Furthermore, since almost all RAMP1 immunoreactive cells co‐express CLR, we propose that RAMP1 expression in the retina reflects functional CGRP receptors. HIGHLIGHTSCGRP is a key player in migraine.CGRP did not co‐localize with its receptor components (CLR, RAMP1) in the retina.CGRP was found mainly in Müller cells while CLR and RAMP1 were co‐expressed in the nerve fiber layer.More cells expressed CLR compared with RAMP1.RAMP1 expression in the retina indicates the presence of functional CGRP receptors.


Cardiovascular Research | 2017

Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation

Aneta Radziwon-Balicka; Gabriela Lesyk; Valentina Back; Teresa Fong; Erica L Loredo-Calderon; Bin Dong; Haitham El-Sikhry; Ahmed A. El-Sherbeni; Ayman O.S. El-Kadi; Stephen Ogg; Arno G. Siraki; John M. Seubert; Maria Jose Santos-Martinez; Marek W. Radomski; Carlos A. Velázquez-Martínez; Ian R. Winship; Paul Jurasz

Aims In addition to maintaining haemostasis, circulating blood platelets are the cellular culprits that form occlusive thrombi in arteries and veins. Compared to blood leucocytes, which exist as functionally distinct subtypes, platelets are considered to be relatively simple cell fragments that form vascular system plugs without a differentially regulated cellular response. Hence, investigation into platelet subpopulations with distinct functional roles in haemostasis/thrombosis has been limited. In our present study, we investigated whether functionally distinct platelet subpopulations exist based on their ability to generate and respond to nitric oxide (NO), an endogenous platelet inhibitor. Methods and results Utilizing highly sensitive and selective flow cytometry protocols, we demonstrate that human platelet subpopulations exist based on the presence and absence of endothelial nitric oxide synthase (eNOS). Platelets lacking eNOS (approximately 20% of total platelets) fail to produce NO and have a down-regulated soluble guanylate cyclase-protein kinase G (sGC-PKG)-signalling pathway. In flow chamber and aggregation experiments eNOS-negative platelets primarily initiate adhesion to collagen, more readily activate integrin αIIbβ3 and secrete matrix metalloproteinase-2, and form larger aggregates than their eNOS-positive counterparts. Conversely, platelets having an intact eNOS-sGC-PKG-signalling pathway (approximately 80% of total platelets) form the bulk of an aggregate via increased thromboxane synthesis and ultimately limit its size via NO generation. Conclusion These findings reveal previously unrecognized characteristics and complexity of platelets and their regulation of adhesion/aggregation. The identification of platelet subpopulations also has potentially important consequences to human health and disease as impaired platelet NO-signalling has been identified in patients with coronary artery disease.


BioMed Research International | 2017

Effect of Regular Aerobic Activity in Young Healthy Athletes on Profile of Endothelial Function and Platelet Activity

Katarzyna Podgórska; Arkadiusz Derkacz; Ewa Szahidewicz-Krupska; Jakub Jasiczek; Piotr Dobrowolski; Aneta Radziwon-Balicka; Robert Skomro; Andrzej Szuba; Grzegorz Mazur; Adrian Doroszko

The aim of the study was to assess the impact of regular professional sports activity on the endothelial and platelet function in young men. The studied group were 79 young men (18–40 y, 25 athletes and 54 without any regular physical activity). The nitric oxide (NO) metabolic pathway intermediates, oxidative stress markers, mediators of inflammation, and platelet aggregation were measured. Flow mediated dilation (FMD) was studied before and after intravenous 16,0 g L-arginine infusion, which was repeated after oral administration of acetylsalicylic acid (ASA-75 mg/day) for 4 days. Both groups had similar demographic characteristics. In the athletes, there was significantly higher hsCRP level, better serum lipid profile, and lower pulse pressure. Greater baseline FMD in athletes and in response to L-arginine disappeared following ASA treatment. There were no differences in the levels of the NO pathway metabolites. The control group was characterized by higher PAI-1 following ASA treatment and sICAM-1 both at baseline and after ASA, but no differences in MDA and 6-keto-PGF-1 alpha and platelet aggregation were noted. Regular professional physical activity modulates endothelial but not platelet function and may thus exert an effect on overall cardiovascular risk.

Collaboration


Dive into the Aneta Radziwon-Balicka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Doroszko

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Skomro

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge