Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aneta Wierzbicka is active.

Publication


Featured researches published by Aneta Wierzbicka.


Indoor Air | 2013

Indoor aerosols: from personal exposure to risk assessment

Lidia Morawska; Alireza Afshari; G.N. Bae; Giorgio Buonanno; Christopher Yu Hang Chao; Otto Hänninen; Werner Hofmann; Christina Isaxon; E.R. Jayaratne; Pertti Pasanen; Tunga Salthammer; Michael S. Waring; Aneta Wierzbicka

Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.


Particle and Fibre Toxicology | 2013

Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study.

Yiyi Xu; Lars Barregard; Jörn Nielsen; Anders Gudmundsson; Aneta Wierzbicka; Anna Axmon; Bo Jönsson; Monica Kåredal; Maria Albin

BackgroundExposure to diesel exhaust causes inflammatory responses. Previous controlled exposure studies at a concentration of 300 μg/m3 of diesel exhaust particles mainly lasted for 1 h. We prolonged the exposure period and investigated how quickly diesel exhaust can induce respiratory and systemic effects.MethodsEighteen healthy volunteers were exposed twice to diluted diesel exhaust (PM1 ~300 μg/m3) and twice to filtered air (PM1 ~2 μg/m3) for 3 h, seated, in a chamber with a double-blind set-up. Immediately before and after exposure, we performed a medical examination, spirometry, rhinometry, nasal lavage and blood sampling. Nasal lavage and blood samples were collected again 20 h post-exposure. Symptom scores and peak expiratory flow (PEF) were assessed before exposure, and at 15, 75, and 135 min of exposure.ResultsSelf-rated throat irritation was higher during diesel exhaust than filtered air exposure. Clinical signs of irritation in the upper airways were also significantly more common after diesel exhaust exposure (odds ratio=3.2, p<0.01). PEF increased during filtered air, but decreased during diesel exhaust exposure, with a statistically significant difference at 75 min (+4 L/min vs. -10 L/min, p=0.005). Monocyte and total leukocyte counts in peripheral blood were higher after exposure to diesel exhaust than filtered air 20 h post-exposure, and a trend (p=0.07) towards increased serum IL-6 concentrations was also observed 20 h post-exposure.ConclusionsDiesel exhaust induced acute adverse effects such as symptoms and signs of irritation, decreased PEF, inflammatory markers in healthy volunteers. The effects were first seen at 75 min of exposure.


Environmental Science & Technology | 2013

Ultrafine Particles: Exposure and Source Apportionment in 56 Danish Homes

Gabriel Bekö; Charles J. Weschler; Aneta Wierzbicka; Dorina Gabriela Karottki; Jørn Toftum; Steffen Loft; Geo Clausen

Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ~45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 10(3) cm(-3)), the lowest when the homes were vacant (GM: 6.1 × 10(3) cm(-3)) or the occupants were asleep (GM: 5.1 × 10(3) cm(-3)). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 10(3) and 6.0 × 10(6) particles per cm(3)·h/day (GM: 3.3 × 10(5) cm(-3)·h/day). On average, ~90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ~65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure.


Aerosol Science and Technology | 2005

Hygroscopic Behavior of Aerosol Particles Emitted from Biomass Fired Grate Boilers

Jenny Rissler; Joakim Pagels; Erik Swietlicki; Aneta Wierzbicka; Michael Strand; Lena Lillieblad; Mehri Sanati; Mats Bohgard

This study focuses on the hygroscopic properties of submicrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth factor (Gf) was measured when taken from a dehydrated to a humidified state for particle diameters between 30–350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar diameter growth and the Gf at RH = 90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.5 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovski-Stokes-Robinson (ZSR) mixing rule and a chemical composition of potassium salts only, taken from ion chromatography analysis of filter and impactor samples (KCl, K2SO4, and K2CO3). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluted with hot particle-free air, the fractal-like structures remained intact until humidified in the H-TDMA. A method to estimate the fractal dimension of the agglomerated combustion aerosol and to convert the measured mobility diameter hygroscopic growth to the more useful property volume diameter growth is presented. The fractal dimension was estimated to be ∼ 2.5.


Environmental Science & Technology | 2014

Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment.

Jenny Rissler; Erik Nordin; Axel Eriksson; Patrik Nilsson; Mia Frosch; Moa K. Sporre; Aneta Wierzbicka; Birgitta Svenningsson; Jakob Löndahl; Maria Messing; S. Sjogren; Jette Gjerke Hemmingsen; Steffen Loft; Joakim Pagels; Erik Swietlicki

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.


Environmental Health | 2014

Vascular and lung function related to ultrafine and fine particles exposure assessed by personal and indoor monitoring: a cross-sectional study

Yulia Olsen; Dorina Gabriela Karottki; Ditte Marie Jensen; Gabriel Bekö; Birthe Uldahl Kjeldsen; Geo Clausen; Lars-Georg Hersoug; Gitte Juel Holst; Aneta Wierzbicka; Torben Sigsgaard; Allan Linneberg; Peter Møller; Steffen Loft

BackgroundExposure to ambient air particulate matter (PM) has been linked to decline in pulmonary function and cardiovascular events possibly through inflammation. Little is known about individual exposure to ultrafine particles (UFP) inside and outside modern homes and associated health-related effects.MethodsAssociations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark. During 48-h, PNC and PM2.5 were monitored in living rooms of 60 homes with 81 non-smoking subjects (30-75 years old), 59 of whom carried personal monitors both when at home and away from home. We measured lung function in terms of the FEV1/FVC ratio, microvascular function (MVF) and pulse amplitude by digital artery tonometry, blood pressure and biomarkers of inflammation including C-reactive protein, and leukocyte counts with subdivision in neutrophils, eosinophils, monocytes, and lymphocytes in blood.ResultsPNC from personal and stationary home monitoring showed weak correlation (r = 0.15, p = 0.24). Personal UFP exposure away from home was significantly inversely associated with MVF (1.3% decline per interquartile range, 95% confidence interval: 0.1-2.5%) and pulse amplitude and positively associated with leukocyte and neutrophil counts. The leukocyte and neutrophil counts were also positively and pulse amplitude negatively associated with total personal PNC. Indoor PNC and PM2.5 showed positive association with blood pressure and inverse association with eosinophil counts.ConclusionsThe inverse association between personal exposure away from home and MVF is consistent with adverse health effects of UFP from sources outside the home and might be related to increased inflammation indicated by leukocyte counts, whereas UFP from sources in the home could have less effect.


Aerosol Science and Technology | 2013

A Novel System for Source Characterization and Controlled Human Exposure to Nanoparticle Aggregates Generated During Gas–Metal Arc Welding

Christina Isaxon; Katrin Dierschke; Joakim Pagels; Anders Gudmundsson; Inger Hagerman; Margareta Berglund; Aneta Wierzbicka; Eva Assarsson; Ulla B Andersson; Bo Jönsson; Mats Bohgard; Jörn Nielsen

The aim of this study was to achieve a method to perform detailed characterization and human exposure studies of nanosized and nanostructured aerosol particles. The source chosen was mild steel, active gas, arc welding fume. The setup consisted of a generation chamber, where welding can be performed, connected to an airtight stainless steel 22 m3 exposure chamber. Instrumentation, consisting of a tapered element oscillating microbalance, a scanning mobility particle sizer, and a sampler for electron microscopy and particle-induced X-ray emission analysis was connected to the stainless steel chamber. The feasibility of the system for human exposure studies was evaluated by exposing 31 human volunteers, in groups of three, to a test aerosol containing 1 mg/m3 welding fumes and to conditioned, filtered air. The results show that an aerosol that accurately represents dilute welding fume exposures that occur in workplaces can be produced in a controlled manner, and that the experimental setup can be used for 6 h, double-blind, exposures of human subjects. Particle mass concentration levels could be varied from <5 μg/m3 to more than 1000 μg/m3. Fumes from metal active gas welding showed a unimodal size distribution with a mean mobility diameter of 160 nm, transmission electron microscopy showed aggregates with a clearly nanosized structure. Copyright 2013 American Association for Aerosol Research


Science of The Total Environment | 2014

A study on particles and some microbial markers in waterpipe tobacco smoke.

Pawel Markowicz; Jakob Löndahl; Aneta Wierzbicka; R Suleiman; Alan Shihadeh; Lennart Larsson

Waterpipe smoking is becoming increasingly popular worldwide. Research has shown that cigarette smoke, in addition to hundreds of carcinogenic and otherwise toxic compounds, may also contain compounds of microbiological origin. In the present study we analyzed waterpipe smoke for some microbial compounds. Both of the two markers studied, viz 3-hydroxy fatty acids of bacterial lipopolysaccharide (LPS) and ergosterol of fungal biomass, were found in waterpipe tobacco, in amounts similar as previously found in cigarette tobacco, and in smoke. Waterpipe mainstream smoke contained on average 1800 pmol LPS and 84.4 ng ergosterol produced per session. An average concentration of 2.8 pmol/m(3) of LPS was found in second hand smoke during a 1-2-h waterpipe smoking session while ergosterol was not detected; corresponding concentrations from smoking five cigarettes were 22.2 pmol/m(3) of LPS and 87.5 ng/m(3) of ergosterol. This is the first time that waterpipe smoking has been shown to create a bioaerosol. In the present study we also found that waterpipe smoking generated several polycyclic aromatic hydrocarbons, carbon monoxide, and high fraction of small (<200 nm) particles that may have adverse effects on human health upon inhalation.


Journal of Aerosol Science | 1970

Particle Emissions from Biomass Fired Grate Boilers

Lena Lillieblad; Aneta Wierzbicka; Michael Strand; Joakim Pagels; Anders Gudmundsson; Mats Bohgard; Erik Swietlicki; Mehri Sanati

Abstract Possible mechanisms of formation of aerosols in the air by chemical reactions in the gas phase are described. In the basic reactions, formation of HCl, H 2 SO 4 and HNO 3 molecules from chlorine, sulphur dioxide and oxides of nitrogen, in the presence of water vapour, have been considered along with the role of solar radiations, ionizing radiations, electric discharges and ozone in the formation of these acids. Formation of nuclei by the hydration of acid molecules and their reaction with other organic and inorganic trace gases have also been discussed. The reactions important in the formation of Aitken nuclei and aerosols are suggested to be, mainly, oxidation, hydration, acid-base reactions and addition and recombination reactions. In these reactions, the combined role of solar and ionizing radiations has been considered. The formation of embryos and growth of particles in the humid air have been discussed on the basis of Raoults law. The important role of chemically formed particles in the atmospheric processes and the possible impact of nuclear power production on the nuclei content of the atmosphere are suggested.


Annals of Occupational Hygiene | 2015

Characterization of Hairdresser Exposure to Airborne Particles during Hair Bleaching.

Patrik Nilsson; Sara Marini; Aneta Wierzbicka; Monica Kåredal; Eva Blomgren; Jörn Nielsen; Giorgio Buonanno; Anders Gudmundsson

Respiratory symptoms among hairdressers are often ascribed to the use of bleaching powders that contain persulfate salts. Such salts can act as allergens and airway irritants but the mechanisms behind the negative health effects are not fully known. In order to understand why some hairdressers experience respiratory symptoms during, and after, sessions of hair bleaching, it is of importance to characterize how exposure occurs. In this work we used time and particle size resolved instrumentation with the aim to measure the concentration of particles that hairdressers are exposed to during sessions of hair bleaching. We also used filter samples to collect particles for quantitative determination of persulfate (S2O8(2-)) content and for analysis by light microscopy. Two different types of bleaching powders were used, one marked as dust-free and one without this marking (denoted regular). The time resolved instrumentation revealed that particles <10 µm were emitted, specifically when the regular powder was prepared and mixed with hydrogen peroxide. In contrast to other research our work also revealed that supercoarse particles (>10 µm) were emitted during application of the bleaching, when both the regular and the dust-free powders were used. The measured level of persulfate, sampled in the breathing zone of the hairdressers, was on average 26 µg m(-3) when the regular powder was used and 11 µg m(-3) when the dust-free powder was used. This indicates that use of dust-free powder does not eliminate exposure to persulfates, it only lowers the concentration. We show that the site of sampling, or position of the hairdresser with regards to the hair being bleached, is of high importance in the determination of persulfate levels and exposure. This work focuses on the physical and chemical characterization of the particles released to the air and the results are important for accurate exposure assessments. Accurate assessments may in turn lead to a better understanding of why some hairdressers experience respiratory symptoms from hair bleaching sessions.

Collaboration


Dive into the Aneta Wierzbicka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge