Anette Müllertz
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anette Müllertz.
European Journal of Pharmaceutical Sciences | 2001
Niels Hønberg Zangenberg; Anette Müllertz; Henning G. Kristensen; Lars Hovgaard
Lipolysis by pancreatic lipase was investigated with the aim to establish an in vitro lipolysis model, which can be used to investigate the dissolution of poorly soluble lipophilic drug substances at controlled hydrolysis rates. The effects of three experimental parameters -- the concentrations of bile salts and Ca(2+) and the lipase activity -- were investigated. The effect on the rate of hydrolysis of emulsified soybean oil was investigated in experiments in a pH-stat at pH 6.5 and 37 degrees C. The free fatty acids produced by the hydrolysis were titrated at pH 6.5. It was shown that all three investigated parameters influence the initial rate of hydrolysis, whereas only the lipase activity and the concentration of Ca(2+) affect the subsequent stages. It was also shown that the rate of lipolysis can be controlled by the rate of adding Ca(2+). Thus, it is possible to design an in vitro model using readily available and inexpensive materials in which the hydrolysis rate can be controlled by the continuous addition of Ca(2+).
European Journal of Pharmaceutical Sciences | 2001
Niels Hønberg Zangenberg; Anette Müllertz; Henning G. Kristensen; Lars Hovgaard
A lipolysis model was characterised and evaluated by investigating the composition of the aqueous phase and the concentration of probucol and danazol in the aqueous phase. Effects of bile salt levels at 5, 10, 20, and 30 mM were investigated. Samples were taken at 0%, 50%, 75% and 95% hydrolysis of the triglycerides, and the aqueous phases were isolated by ultra-centrifugation, whereby the concentrations of bile salts, fatty acids, mono-, di-, triglycerides, and drug substances were measured. At high Ca(2+)-concentrations, bile salts were believed to precipitate with Ca(2+). The concentration of lipolytic products (fatty acids + monoglycerides) was dependent on the bile salt concentration. The ratio between lipolytic product and bile salts was 1.55+/-0.09 (S.D.). This ratio is equivalent to mixed bile salt micelles and vesicles in equilibrium. The aqueous solubility of probucol and danazol was increased in the presence of bile salts. The concentration of danazol in the aqueous phase was dependent on the solubilisation capacity of the aqueous phase. In the case of probucol, the concentration in the aqueous phase was dependent on the partition of probucol between the aqueous phase and the remaining triglyceride phase. This difference between danazol and probucol was attributed to the effect of different lipophilicity.
European Journal of Pharmaceutical Sciences | 2008
Rose Hayeshi; Constanze Hilgendorf; Per Artursson; Patrick Augustijns; Birger Brodin; Pascale Dehertogh; Karen Fisher; Lina Fossati; Egbert Hovenkamp; Timo Korjamo; C. Masungi; Nathalie Maubon; Raf Mols; Anette Müllertz; Jukka Mönkkönen; Caitriona M. O'Driscoll; H M Oppers-Tiemissen; Eva Ragnarsson; Martijn Rooseboom; Anna-Lena Ungell
Caco-2 cells, widely used to study carrier mediated uptake and efflux mechanisms, are known to have different properties when cultured under different conditions. In this study, Caco-2 cells from 10 different laboratories were compared in terms of mRNA expression levels of 72 drug and nutrient transporters, and 17 other target genes, including drug metabolising enzymes, using real-time PCR. The rank order of the top five expressed genes was: HPT1>GLUT3>GLUT5>GST1A>OATP-B. Rank correlation showed that for most of the samples, the gene ranking was not significantly different. Functionality of transporters and the permeability of passive transport markers metoprolol (transcellular) and atenolol (paracellular) were also compared. MDR1 and PepT1 function was investigated using talinolol and Gly-Sar transport, respectively. Sulfobromophthalein (BSP) was used as a marker for MRP2 and OATP-B functionality. Atenolol permeability was more variable across laboratories than metoprolol permeability. Talinolol efflux was observed by all the laboratories, whereas only five laboratories observed significant apical uptake of Gly-Sar. Three laboratories observed significant efflux of BSP. MDR1 expression significantly correlated to the efflux ratio and net active efflux of talinolol. PepT1 mRNA levels showed significant correlation to the uptake ratio and net active uptake of Gly-Sar. MRP2 and OATP-B showed no correlation to BSP transport parameters. Heterogeneity in transporter activity may thus be due to differences in transporter expression as shown for PepT1 and MDR1 which in turn is determined by the culture conditions. Absolute expression of genes was variable indicating that small differences in culture conditions have a significant impact on gene expression, although the overall expression patterns were similar.
European Journal of Pharmaceutical Sciences | 2014
Edmund S. Kostewicz; Bertil Abrahamsson; Marcus E. Brewster; Joachim Brouwers; James Butler; Sara Carlert; Paul A. Dickinson; Jennifer B. Dressman; René Holm; Sandra Klein; James Mann; Mark McAllister; Mans Minekus; Uwe Muenster; Anette Müllertz; Miriam Verwei; Maria Vertzoni; Werner Weitschies; Patrick Augustijns
Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract.
Journal of Pharmacy and Pharmacology | 2010
Anette Müllertz; Anayo Ogbonna; Shan Ren; Thomas Rades
Objectives The aim of this review is to highlight relevant considerations when implementing a rational strategy for the development of lipid and surfactant based drug delivery system and to discuss shortcomings and challenges to the current classification of these delivery systems. We also aim to offer suggestions for an improved classification system that will accommodate lipid based formulations that are not currently accommodated in the lipid formulation classification system.
European Journal of Pharmaceutical Sciences | 2014
Christel A. S. Bergström; René Holm; Søren Astrup Jørgensen; Sara B.E. Andersson; Per Artursson; Stefania Beato; Anders Borde; Karl Box; Marcus E. Brewster; Jennifer B. Dressman; Kung-I. Feng; Gavin Halbert; Edmund S. Kostewicz; Mark McAllister; Uwe Muenster; Julian Thinnes; Robert Taylor; Anette Müllertz
Preformulation measurements are used to estimate the fraction absorbed in vivo for orally administered compounds and thereby allow an early evaluation of the need for enabling formulations. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the pharmaceutical profiling methods available, with focus on in silico and in vitro models typically used to forecast active pharmaceutical ingredients (APIs) in vivo performance after oral administration. An overview of the composition of human, animal and simulated gastrointestinal (GI) fluids is provided and state-of-the art methodologies to study API properties impacting on oral absorption are reviewed. Assays performed during early development, i.e. physicochemical characterization, dissolution profiles under physiological conditions, permeability assays and the impact of excipients on these properties are discussed in detail and future demands on pharmaceutical profiling are identified. It is expected that innovative computational and experimental methods that better describe molecular processes involved in vivo during dissolution and absorption of APIs will be developed in the OrBiTo. These methods will provide early insights into successful pathways (medicinal chemistry or formulation strategy) and are anticipated to increase the number of new APIs with good oral absorption being discovered.
Journal of Pharmaceutical Sciences | 2012
Hywel D. Williams; Philip Sassene; Karen Kleberg; Jean-Claude Bakala-N'Goma; Marilyn Calderone; Vincent Jannin; Annabel Igonin; Anette Partheil; Delphine Marchaud; Eduardo Jule; Jan Vertommen; Mario Maio; Ross Blundell; Hassan Benameur; Frédéric Carrière; Anette Müllertz; Christopher J. H. Porter; Colin W. Pouton
The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation.
International Journal of Pharmaceutics | 2013
Huiling Mu; René Holm; Anette Müllertz
Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving/dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect on the biopharmaceutical aspects of drug absorption and distribution both in vitro and in vivo. The aim of this review is to provide an overview of the different lipid-based dosage forms from a biopharmaceutical point of view and to describe effects of lipid dosage forms and lipid excipients on drug solubility, absorption and distribution.
Pharmaceutical Research | 2000
Betty Lomstein Pedersen; Anette Müllertz; Helle Brøndsted; Henning G. Kristensen
Betty Lomstein Pedersen,1,3 Anette Müllertz,1 Dissolution Media Helle Brøndsted,2 and Henning Gjelstrup Ten HIFs and five human gastric fluids (HGFs) were used. Kristensen1 The fluids originated from 13 healthy male and female subjects who had fasted for 10 hours. For two subjects both the intestinal and gastric fluid were included in the study. The method for Received February 17, 2000; accepted April 11, 2000 aspiration has been described in detail by Lindahl et al. (1) and
European Journal of Pharmaceutical Sciences | 2003
René Holm; Christopher J. H. Porter; Glenn A. Edwards; Anette Müllertz; Henning G. Kristensen; William N. Charman
The potential for lipidic self-microemulsifying drug delivery systems (SMEDDS) containing triglycerides with a defined structure, where the different fatty acids on the glycerol backbone exhibit different metabolic fate, to improve the lymphatic transport and the portal absorption of a poorly water-soluble drug, halofantrine, were investigated in fasted lymph cannulated canines. Two different structured triglycerides were incorporated into the SMEDDS; 1,3-dioctanoyl-2-linoleyl-sn-glycerol (C8:0-C18:2-C8:0) (MLM) and 1,3-dilinoyl-2-octanoyl-sn-glycerol (C18:2-C8:0-C18:2) (LML). A previously optimised SMEDDS formulation for halofantrine, comprising of triglyceride, Cremophor EL, Maisine 35-1 and ethanol was selected for bioavailability assessment. The extent of lymphatic transport via the thoracic duct was 17.9% of the dose for the animals dosed with the MLM SMEDDS and 27.4% for LML. Also the plasma availability was affected by the triglyceride incorporated into the multi-component delivery system and availabilities of 56.9% (MLM) and 37.2% (LML) were found. These data indicate that the pharmaceutical scientist can use the structure of the lipid to affect the relative contribution of the two absorption pathways. The MLM formulation produced a total bioavailability of 74.9%, which is higher than the total absorption previously observed after post-prandial administration. This could indicate the utility of disperse lipid-base formulations based on structured triglycerides for the oral delivery of halofantrine, and potentially other lipophilic drugs.