Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angel Alvarez is active.

Publication


Featured researches published by Angel Alvarez.


Chinese Journal of Cancer | 2013

Noncoding RNAs in cancer and cancer stem cells

Tianzhi Huang; Angel Alvarez; Bo Hu; Shi Yuan Cheng

In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.


Journal of Clinical Investigation | 2014

EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis

Haizhong Feng; Giselle Y. Lopez; Chung Kwon Kim; Angel Alvarez; Christopher G. Duncan; Ryo Nishikawa; Motoo Nagane; An Jey A. Su; Philip E. Auron; Matthew L. Hedberg; Lin Wang; Jeffery J. Raizer; John A. Kessler; Andrew T. Parsa; Wei Qiang Gao; Sung Hak Kim; Mutsuko Minata; Ichiro Nakano; Jennifer R. Grandis; Roger E. McLendon; Darell D. Bigner; Hui-Kuan Lin; Frank B. Furnari; Webster K. Cavenee; Bo Hu; Hai Yan; Shi Yuan Cheng

Aberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.


Oncogene | 2016

SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial–mesenchymal transition and invasion in mice and humans

Lei Zhang; Wei-jie Zhang; Yanxin Li; Angel Alvarez; Zuoqing Li; Yanli Wang; Libing Song; Deguan Lv; Ichiro Nakano; Bo Hu; Shi Yuan Cheng; Haizhong Feng

Gliomas are highly malignant brain tumors that are highly invasive and resistant to conventional therapy. Receptor tyrosine kinases (RTKs) such as PDGFRα (platelet-derived growth factor receptor-α), which show frequent aberrant activation in gliomas, are associated with a process of epithelial–mesenchymal transition (EMT), a cellular alteration that confers a more invasive and drug-resistant phenotype. Although this phenomenon is well documented in human cancers, the processes by which RTKs including PDGFRα mediate EMT are largely unknown. Here, we report that SHP-2 (encoded by PTPN11) upregulates an EMT inducer, ZEB1, to mediate PDGFRα-driven glioma EMT, invasion and growth in glioma cell lines and patient-derived glioma stem cells (GSCs) using cell culture and orthotopic xenograft models. ZEB1 and activated PDGFRα were coexpressed in invasive regions of mouse glioma xenografts and clinical glioma specimens. Glioma patients with high levels of both phospho-PDGFRα (p-PDGFRα) and ZEB1 had significantly shorter overall survival compared with those with low expression of p-PDGFRα and ZEB1. Knockdown of ZEB1 inhibited PDGFA/PDGFRα-stimulated glioma EMT, tumor growth and invasion in glioma cell lines and patient-derived GSCs. PDGFRα mutant deficient of SHP2 binding (PDGFRα-F720) or phosphoinositide 3-kinase (PI3K) binding (PDGFRα-F731/42), knockdown of SHP2 or treatments of pharmacological inhibitor for PDGFRα-signaling effectors attenuated PDGFA/PDGFRα-stimulated ZEB1 expression, cell migration and GSC proliferation. Importantly, SHP-2 acts together with PI3K/AKT to regulate a ZEB1-miR-200 feedback loop in PDGFRα-driven gliomas. Taken together, our findings uncover a new pathway in which ZEB1 functions as a key regulator for PDGFRα-driven glioma EMT, invasiveness and growth, suggesting that ZEB1 is a promising therapeutic target for treating gliomas with high PDGFRα activation.


Developmental and Comparative Immunology | 2014

Cellular immune responses against viral pathogens in shrimp.

Dandan Xu; Weifeng Liu; Angel Alvarez; Tianzhi Huang

Shrimp is one of the most important commercial marine species worldwide; however, viral diseases threaten the healthy development of shrimp aquaculture. In order to develop efficient control strategies against viral diseases, researchers have begun focusing increasing attention to the molecular mechanism of shrimp innate immunity. Although knowledge of shrimp humoral immunity has grown significantly in recent years, very little information is available about the cell-mediated immune responses. Several cellular processes such as phagocytosis, apoptosis, and RNA interference critical in cellular immune response play a significant role in endogenous antiviral activity in shrimp. In this review, we summarize the emerging research and highlight key mediators of cellular immune response to viral pathogens.


Journal of Molecular Neuroscience | 2015

The Effects of Histone Deacetylase Inhibitors on Glioblastoma-Derived Stem Cells

Angel Alvarez; Melvin Field; Sergey Bushnev; Matthew S. Longo; Kiminobu Sugaya

Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited effective treatment options. Cancer stem cells (CSCs), a subpopulation of cancer cells with stem cell properties found in GBMs, have been shown to be extremely resistant to radiation and chemotherapeutic agents and have the ability to readily reform tumors. Therefore, the development of therapeutic agents targeting CSCs is extremely important. In this study, we isolated glioblastoma-derived stem cells (GDSCs) from GBM tissue removed from patients during surgery and analyzed their gene expression using quantitative real-time PCR and immunocytochemistry. We examined the effects of histone deacetylase inhibitors trichostatin A (TSA) and valproic acid (VPA) on the proliferation and gene expression profiles of GDSCs. The GDSCs expressed significantly higher levels of both neural and embryonic stem cell markers compared to GBM cells expanded in conventional monolayer cultures. Treatment of GDSCs with histone deacetylase inhibitors, TSA and VPA, significantly reduced proliferation rates of the cells and expression of the stem cell markers, indicating differentiation of the cells. Since differentiation into GBM makes them susceptible to the conventional cancer treatments, we posit that use of histone deacetylase inhibitors may increase efficacy of the conventional cancer treatments for eliminating GDSCs.


Nature Communications | 2016

A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways

Tianzhi Huang; Angel Alvarez; Rajendra P. Pangeni; Craig Horbinski; Songjian Lu; Sung Hak Kim; C. David James; Jeffery J. Raizer; John A. Kessler; Cameron Brenann; Erik P. Sulman; Gaetano Finocchiaro; Ming Tan; Ryo Nishikawa; Xinghua Lu; Ichiro Nakano; Bo Hu; Shi Yuan Cheng

Molecularly defined subclassification is associated with phenotypic malignancy of glioblastoma (GBM). However, current understanding of the molecular basis of subclass conversion that is often involved in GBM recurrence remain rudimentary at best. Here we report that canonical Wnt signalling that is active in proneural (PN) but inactive in mesenchymal (MES) GBM, along with miR-125b and miR-20b that are expressed at high levels in PN compared with MES GBM, comprise a regulatory circuit involving TCF4-miR-125b/miR-20b-FZD6. FZD6 acts as a negative regulator of this circuit by activating CaMKII–TAK1–NLK signalling, which, in turn, attenuates Wnt pathway activity while promoting STAT3 and NF-κB signalling that are important regulators of the MES-associated phenotype. These findings are confirmed by targeting differentially enriched pathways in PN versus MES GBM that results in inhibition of distinct GBM subtypes. Correlative expressions of the components of this circuit are prognostic relevant for clinical GBM. Our findings provide insights for understanding GBM pathogenesis and for improving treatment of GBM.


Cancer Cell | 2017

MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma

Tianzhi Huang; Chung Kwon Kim; Angel Alvarez; Rajendra P. Pangeni; Xuechao Wan; Xiao Song; Taiping Shi; Yongyong Yang; Namratha Sastry; Craig Horbinski; Songjian Lu; Roger Stupp; John A. Kessler; Ryo Nishikawa; Ichiro Nakano; Erik P. Sulman; Xinghua Lu; Charles David James; Xiao Ming Yin; Bo Hu; Shi Yuan Cheng

Summary ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition of MST4 or ATG4B activities using genetic approaches or an inhibitor of ATG4B suppresses autophagy and the tumorigenicity of glioblastoma (GBM) cells. Furthermore, radiation induces MST4 expression, ATG4B phosphorylation, and autophagy. Inhibiting ATG4B in combination with radiotherapy in treating mice with intracranial GBM xenograft markedly slows tumor growth and provides a significant survival benefit. Our work describes an MST4-ATG4B signaling axis that influences GBM autophagy and malignancy, and whose therapeutic targeting enhances the anti-tumor effects of radiotherapy.


BioTechniques | 2016

A simple, low-cost staining method for rapid-throughput analysis of tumor spheroids

Frank Eckerdt; Angel Alvarez; Jonathan B. Bell; Constadina Arvanitis; Asneha Iqbal; Ahmet Dirim Arslan; Bo Hu; Shi Yuan Cheng; Stewart Goldman; Leonidas C. Platanias

Tumor spheroids are becoming an important tool for the investigation of cancer stem cell (CSC) function in tumors; thus, low-cost and high-throughput methods for drug screening of tumor spheroids are needed. Using neurospheres as non-adherent three-dimensional (3-D) cultures, we developed a simple, low-cost acridine orange (AO)-based method that allows for rapid analysis of live neurospheres by fluorescence microscopy in a 96-well format. This assay measures the cross-section area of a spheroid, which corresponds to cell viability. Our novel method allows rapid screening of a panel of anti-proliferative drugs to assess inhibitory effects on the growth of cancer stem cells in 3-D cultures.


Molecular Cancer Research | 2016

MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma

Jonathan B. Bell; Frank Eckerdt; Kristen Alley; Lisa P. Magnusson; Hridi Hussain; Yingtao Bi; Ahmet Dirim Arslan; Jessica Clymer; Angel Alvarez; Stewart Goldman; Shi Yuan Cheng; Ichiro Nakano; Craig Horbinski; Ramana V. Davuluri; C. David James; Leonidas C. Platanias

Glioblastoma multiforme remains the deadliest malignant brain tumor, with glioma stem cells (GSC) contributing to treatment resistance and tumor recurrence. We have identified MAPK-interacting kinases (MNK) as potential targets for the GSC population in glioblastoma multiforme. Isoform-level subtyping using The Cancer Genome Atlas revealed that both MNK genes (MKNK1 and MKNK2) are upregulated in mesenchymal glioblastoma multiforme as compared with other subtypes. Expression of MKNK1 is associated with increased glioma grade and correlated with the mesenchymal GSC marker, CD44, and coexpression of MKNK1 and CD44 predicts poor survival in glioblastoma multiforme. In established and patient-derived cell lines, pharmacologic MNK inhibition using LY2801653 (merestinib) inhibited phosphorylation of the eukaryotic translation initiation factor 4E, a crucial effector for MNK-induced mRNA translation in cancer cells and a marker of transformation. Importantly, merestinib inhibited growth of GSCs grown as neurospheres as determined by extreme limiting dilution analysis. When the effects of merestinib were assessed in vivo using an intracranial xenograft mouse model, improved overall survival was observed in merestinib-treated mice. Taken together, these data provide strong preclinical evidence that pharmacologic MNK inhibition targets mesenchymal glioblastoma multiforme and its GSC population. Implications: These findings raise the possibility of MNK inhibition as a viable therapeutic approach to target the mesenchymal subtype of glioblastoma multiforme. Mol Cancer Res; 14(10); 984–93. ©2016 AACR.


Nature Communications | 2017

TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma

Deguan Lv; Yanxin Li; Weiwei Zhang; Angel Alvarez; Lina Song; Jianming Tang; Wei Qiang Gao; Bo Hu; Shi Yuan Cheng; Haizhong Feng

Aberrant amplification and mutations of epidermal growth factor receptor (EGFR) are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive pathogenesis are not well understood. Here, we determine that non-canonical histone signature acetylated H3 lysine 23 (H3K23ac)-binding protein tripartite motif-containing 24 (TRIM24) is upregulated in clinical GBM specimens and required for EGFR-driven tumorigenesis. In multiple glioma cell lines and patient-derived glioma stem cells (GSCs), EGFR signaling promotes H3K23 acetylation and association with TRIM24. Consequently, TRIM24 functions as a transcriptional co-activator and recruits STAT3, leading to stabilized STAT3-chromatin interactions and subsequent activation of STAT3 downstream signaling, thereby enhancing EGFR-driven tumorigenesis. Our findings uncover a pathway in which TRIM24 functions as a signal relay for oncogenic EGFR signaling and suggest TRIM24 as a potential therapeutic target for GBM that are associated with EGFR activation.EGF receptor (EGFR) amplification and mutation are major drivers in glioma tumorigenesis but this mechanism is not well understood. Here, the authors show EGFR-upregulated H3K23ac binds TRIM24 which recruits STAT3, leading to activation of STAT3 signaling, enhancing EGFR-driven tumorigenesis.

Collaboration


Dive into the Angel Alvarez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Hu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kiminobu Sugaya

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Ichiro Nakano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haizhong Feng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinghua Lu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Erik P. Sulman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge