Angel Barco
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angel Barco.
Neuron | 2004
Juan M. Alarcon; Gaël Malleret; Khalid Touzani; Svetlana Vronskaya; Shunsuke Ishii; Eric R. Kandel; Angel Barco
We studied a mouse model of the haploinsufficiency form of Rubinstein-Taybi syndrome (RTS), an inheritable disorder caused by mutations in the gene encoding the CREB binding protein (CBP) and characterized by mental retardation and skeletal abnormalities. In these mice, chromatin acetylation, some forms of long-term memory, and the late phase of hippocampal long-term potentiation (L-LTP) were impaired. We ameliorated the L-LTP deficit in two ways: (1) by enhancing the expression of CREB-dependent genes, and (2) by inhibiting histone deacetyltransferase activity (HDAC), the molecular counterpart of the histone acetylation function of CBP. Inhibition of HDAC also reversed the memory defect observed in fear conditioning. These findings suggest that some of the cognitive and physiological deficits observed on RTS are not simply due to the reduction of CBP during development but may also result from the continued requirement throughout life for both the CREB co-activation and the histone acetylation function of CBP.
Cell | 2002
Angel Barco; Juan M. Alarcon; Eric R. Kandel
Restricted and regulated expression in mice of VP16-CREB, a constitutively active form of CREB, in hippocampal CA1 neurons lowers the threshold for eliciting a persistent late phase of long-term potentiation (L-LTP) in the Schaffer collateral pathway. This L-LTP has unusual properties in that its induction is not dependent on transcription. Pharmacological and two-pathway experiments suggest a model in which VP16-CREB activates the transcription of CRE-driven genes and leads to a cell-wide distribution of proteins that prime the synapses for subsequent synapse-specific capture of L-LTP by a weak stimulus. Our analysis indicates that synaptic capture of CRE-driven gene products may be sufficient for consolidation of LTP and provides insight into the molecular mechanisms of synaptic tagging and synapse-specific potentiation.
Neuron | 2004
Ying Gao; Kangwen Deng; Jianwei Hou; J.Barney Bryson; Angel Barco; Elena Nikulina; Tim Spencer; Wilfredo Mellado; Eric R. Kandel; Marie T. Filbin
Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB) to overcome myelin inhibitors; a dominant-negative CREB abolishes the effect, and neurons expressing a constitutively active form of CREB are not inhibited. Activation of CREB is also required for cAMP to upregulate Arg I, and the ability of constitutively active CREB to overcome inhibition is blocked by an inhibitor of polyamine synthesis. Finally, expression of constitutively active CREB in DRG neurons is sufficient to promote regeneration of subsequently lesioned dorsal column axons. These results indicate that CREB plays a central role in overcoming myelin inhibitors and so encourages regeneration in vivo.
Neuron | 2005
Angel Barco; Susan L. Patterson; Juan M. Alarcon; Petra Gromova; Manuel Mata-Roig; Alexei Morozov; Eric R. Kandel
Expression of VP16-CREB, a constitutively active form of CREB, in hippocampal neurons of the CA1 region lowers the threshold for eliciting the late, persistent phase of long-term potentiation (L-LTP) in the Schaffer collateral pathway. This VP16-CREB-mediated L-LTP differs from the conventional late phase of LTP in not being dependent on new transcription. This finding suggests that in the transgenic mice the mRNA transcript(s) encoding the protein(s) necessary for this form of L-LTP might already be present in CA1 neurons in the basal condition. We used high-density oligonucleotide arrays to identify the mRNAs differentially expressed in the hippocampus of transgenic and wild-type mice. We then explored the contribution of the most prominent candidate genes revealed by our screening, namely prodynorphin, BDNF, and MHC class I molecules, to the facilitated LTP of VP16-CREB mice. We found that the overexpression of brain-derived neurotrophic factor accounts for an important component of this phenotype.
Expert Opinion on Therapeutic Targets | 2003
Angel Barco; Christopher Pittenger; Eric R. Kandel
The treatment of memory disorders, such as the gradual weakening of memory with age, the ravages of Alzheimer’s disease and the cognitive deficits in various forms of mental retardation, may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. There is increasing interest in the possibility of pharmacologically enhancing learning and memory even in the absence of specific anatomically evident pathology. Substantial evidence in experimental systems ranging from molluscs to humans indicates that the cAMP response element binding protein (CREB) is a core component of the molecular switch that converts short- to long-term memory. Recent studies have greatly strengthened and refined our understanding of the role of CREB in learning and memory in mammals, in addition to providing greater insight into the molecular mechanisms of CREB regulation and function. This involvement of CREB and the upstream signalling pathways leading to its activation in learning-associated plasticity makes them attractive targets for drugs aimed at improving memory function, in both diseased and healthy individuals. However, CREB and its close relatives cAMP response element modulator and activating transcription factor-1 are ubiquitous proteins with several critical functions. This creates hurdles that the authors believe may limit the usefulness of CREB per se as a target for the development of memory-enhancing drugs, and focus on components of the upstream signalling pathways or on specific downstream targets will be required.
The Journal of Neuroscience | 2007
Mikel Lopez de Armentia; Dragana Jancic; Roman Olivares; Juan M. Alarcon; Eric R. Kandel; Angel Barco
To investigate the role of CREB-mediated gene expression on the excitability of CA1 pyramidal neurons, we obtained intracellular recordings from pyramidal neurons of transgenic mice expressing a constitutively active form of CREB, VP16–CREB, in a regulated and restricted manner. We found that transgene expression increased the neuronal excitability and inhibited the slow and medium afterhyperpolarization currents. These changes may contribute to the reduced threshold for LTP observed in these mice. When strong transgene expression was turned on for prolonged period of time, these mice also showed a significant loss of hippocampal neurons and sporadic epileptic seizures. These deleterious effects were dose dependent and could be halted, but not reversed by turning off transgene expression. Our experiments reveal a new role for hippocampal CREB-mediated gene expression, identify the slow afterhyperpolarization as a primary target of CREB action, provide a new mouse model to investigate temporal lobe epilepsy and associated neurodegeneration, and illustrate the risks of cell death associated to a sustained manipulation of this pathway. As a result, our study has important implications for both the understanding of the cellular bases of learning and memory and the consideration of therapies targeted to the CREB pathway.
The Journal of Neuroscience | 2011
Luis M. Valor; Matias M. Pulopulos; María Jiménez-Minchan; Roman Olivares; Beat Lutz; Angel Barco
Rubinstein-Taybi syndrome (RSTS) is an inheritable disease associated with mutations in the gene encoding the CREB (cAMP response element-binding protein)-binding protein (CBP) and characterized by growth impairment, learning disabilities, and distinctive facial and skeletal features. Studies in mouse models for RSTS first suggested a direct role for CBP and histone acetylation in cognition and memory. Here, we took advantage of the genetic tools for generating mice in which the CBP gene is specifically deleted in postmitotic principal neurons of the forebrain to investigate the consequences of the loss of CBP in the adult brain. In contrast to the conventional CBP knock-out mice, which exhibit very early embryonic lethality, postnatal forebrain-restricted CBP mutants were viable and displayed no overt abnormalities. We identified the dimer of histones H2A and H2B as the preferred substrate of the histone acetyltransferase domain of CBP. Surprisingly, the loss of CBP and subsequent histone hypoacetylation had a very modest impact in the expression of a number of immediate early genes and did not affect neuronal viability. In addition, the behavioral characterization of these mice dissociated embryonic and postnatal deficits caused by impaired CBP function, narrowed down the anatomical substrate of specific behavioral defects, and confirmed the special sensitivity of object recognition memory to CBP deficiency. Overall, our study provides novel insights into RSTS etiology and clarifies some of the standing questions concerning the role of CBP and histone acetylation in activity-driven gene expression, memory formation, and neurodegeneration.
Learning & Memory | 2009
Jose Viosca; Mikel Lopez de Armentia; Dragana Jancic; Angel Barco
Regulated expression of a constitutively active form of cAMP response element-binding protein (CREB), VP16-CREB, lowers the threshold for the late phase of long-term potentiation in the Schaffer collateral pathway in a de novo gene expression-independent manner, and increases the excitability and reduces afterhyperpolarization of neurons at the amygdala and the hippocampus. We explore the consequences of these changes on the consolidation of fear conditioning and find that the expression of VP16-CREB can bypass the requirement for de novo gene expression associated with long-term memory formation, suggesting that CREB-dependent gene expression is sufficient for fear memory consolidation.
Current Pharmaceutical Design | 2013
Luis M. Valor; Jose Viosca; Jose P. Lopez-Atalaya; Angel Barco
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
The Journal of Neuroscience | 2006
Juan M. Alarcon; Angel Barco; Eric R. Kandel
Studies in the rodent hippocampus have demonstrated that when the late phase of long-term potentiation (L-LTP) is induced in a set of synapses by suprathreshold stimulation, L-LTP can also be expressed by other synapses receiving subthreshold stimulation, a phenomenon usually referred as “capture of L-LTP.” Because the pyramidal neurons in the mammalian hippocampus have both apical and basal dendrites, we have now investigated whether capture of L-LTP, previously described only within the apical dendritic compartment, can also take place within the basilar dendritic compartment and, if so, whether capture can be accomplished from one dendritic compartment to the other. We found that capture of L-LTP can also occur within the basilar dendritic compartment and that the tagging signal that enables capture appears to be the same in both dendritic compartments. However, capture across compartments, between the apical and basilar dendrites, follows different rules and requires a stronger triggering stimulation than capture within a compartment. These results suggest that the tag appears specific to a compartment either apical or basilar and that an additional mechanism may be required to capture across compartments.