Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angel Campos-Barros is active.

Publication


Featured researches published by Angel Campos-Barros.


Journal of Clinical Investigation | 1999

Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin

E. Dale Abel; Helen C. Kaulbach; Angel Campos-Barros; Rexford S. Ahima; Mary Ellen Boers; Koshi Hashimoto; Douglas Forrest; Fredric E. Wondisford

Patients with resistance to thyroid hormone (RTH) exhibit elevated thyroid hormone levels and inappropriate thyrotropin (thyroid-stimulating hormone, or TSH) production. The molecular basis of this disorder resides in the dominant inhibition of endogenous thyroid hormone receptors (TRs) by a mutant receptor. To determine the relative contributions of pituitary versus hypothalamic resistance to the dysregulated production of thyroid hormone in these patients, we developed a transgenic mouse model with pituitary-specific expression of a mutant TR (Delta337T). The equivalent mutation in humans is associated with severe generalized RTH. Transgenic mice developed profound pituitary resistance to thyroid hormone, as demonstrated by markedly elevated baseline and non-triodothyronine (T3)-suppressible serum TSH and pituitary TSH-beta mRNA. Serum thyroxine (T4) levels were only marginally elevated in transgenic mice and thyrotropin-releasing hormone (TRH) gene expression in the paraventricular hypothalamus was downregulated. After TRH administration, T4 concentrations increased markedly in transgenic, but not in wild-type mice. Transgenic mice rendered hypothyroid exhibited a TSH response that was only 30% of the response observed in wild-type animals. These findings indicate that pituitary expression of this mutant TR impairs both T3-mediated suppression and T3-independent activation of TSH production in vivo. The discordance between basal TSH and T4 levels and the reversal with TRH administration demonstrates that resistance at the level of both the thyrotroph and the hypothalamic TRH neurons are required to elevate thyroid hormone levels in patients with RTH.


American Journal of Medical Genetics Part A | 2010

CDKN1C (p57Kip2) analysis in Beckwith–Wiedemann syndrome (BWS) patients: Genotype–phenotype correlations, novel mutations, and polymorphisms

Valeria Romanelli; Alberta Belinchón; Sara Benito-Sanz; Víctor Martínez-Glez; Ricardo Gracia-Bouthelier; Karen E. Heath; Angel Campos-Barros; Sixto García-Miñaúr; Luis Venancio Oceja Fernández; Heloisa Meneses; Juan Pedro López-Siguero; Encarna Guillén-Navarro; Paulino Gómez-Puertas; Jan-Jaap Wesselink; Graciela Mercado; Rebeca Palomo; Rocío Mena; Aurora Sánchez; Miguel del Campo; Pablo Lapunzina

Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by macroglossia, macrosomia, and abdominal wall defects. It is a multigenic disorder caused in most patients by alterations in growth regulatory genes. A small number of individuals with BWS (5–10%) have mutations in CDKN1C, a cyclin‐dependent kinase inhibitor of G1 cyclin complexes that functions as a negative regulator of cellular growth and proliferation. Here, we report on eight patients with BWS and CDKN1C mutations and review previous reported cases. We analyzed 72 patients (50 BWS, 17 with isolated hemihyperplasia (IH), three with omphalocele, and two with macroglossia) for CDKN1C defects with the aim to search for new mutations and to define genotype–phenotype correlations. Our findings suggest that BWS patients with CDKN1C mutations have a different pattern of clinical malformations than those with other molecular defects. Polydactyly, genital abnormalities, extra nipple, and cleft palate are more frequently observed in BWS with mutations in CDKN1C. The clinical observation of these malformations may help to decide which genetic characterization should be undertaken (i.e., CDKN1C screening), thus optimizing the laboratory evaluation for BWS.


Journal of Medical Genetics | 2012

Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer

Sara Benito-Sanz; José Luis Royo; Eva Barroso; Beatriz Paumard-Hernández; Ana Coral Barreda-Bonis; Pengfei Liu; Ricardo Gracia; James R. Lupski; Angel Campos-Barros; José Luis Gómez-Skarmeta; Karen E. Heath

Background SHOX, located in the pseudoautosomal region 1 (PAR1) of the sexual chromosomes, encodes a transcription factor implicated in human growth. Defects in SHOX or its enhancers have been observed in ∼60% of Leri-Weill dyschondrosteosis (LWD) patients, a skeletal dysplasia characterised by short stature and/or the characteristic Madelung deformity, and in 2–5% of idiopathic short stature (ISS). To identify the molecular defect in the remaining genetically undiagnosed LWD and ISS patients, this study screened previously unanalysed PAR1 regions in 124 LWD and 576 ISS probands. Methods PAR1 screening was undertaken by multiplex ligation dependent probe amplification (MLPA). Copy number alterations were subsequently confirmed and delimited by locus-specific custom-designed MLPA, array comparative genomic hybridisation (CGH) and breakpoint junction PCR/sequencing. Results A recurrent PAR1 deletion downstream of SHOX spanning 47543 bp with identical breakpoints was identified in 19 LWD (15.3%) and 11 ISS (1.9%) probands, from 30 unrelated families. Eight evolutionarily conserved regions (ECRs 1–8) identified within the deleted sequence were evaluated for SHOX regulatory activity by means of chromosome conformation capture (3C) in chicken embryo limbs and luciferase reporter assays in human U2OS osteosarcoma cells. The 3C assay indicated potential SHOX regulatory activity by ECR1, which was subsequently confirmed to act as a SHOX enhancer, operating in an orientation and position independent manner, in human U2OS cells. Conclusions This study has identified the first recurrent PAR1 deletion in LWD and ISS, which results in the loss of a previously uncharacterised SHOX enhancer. The loss of this enhancer may decrease SHOX transcription, resulting in LWD or ISS due to SHOX haploinsufficiency.


The Journal of Clinical Endocrinology and Metabolism | 2008

Primary Acid-Labile Subunit Deficiency due to Recessive IGFALS Mutations Results in Postnatal Growth Deficit Associated with Low Circulating Insulin Growth Factor (IGF)-I, IGF Binding Protein-3 Levels, and Hyperinsulinemia

Karen E. Heath; Jesús Argente; Vicente Barrios; Jesús Pozo; Francisca Díaz-González; Gabriel Ángel Martos-Moreno; María Caimari; Ricardo Gracia; Angel Campos-Barros

CONTEXT Up to 90% of circulating IGF-I and IGF-II are carried bound to either IGF binding protein (IGFBP)-3 or IGFBP-5 and the acid-labile subunit (ALS) in the form of tertiary complexes that extend their circulating half-life. Three cases of complete ALS deficiency have been recently reported in short-stature patients with very low circulating IGF-I and IGFBP-3 levels who presented with homozygous or compound heterozygous mutations in the ALS encoding gene (IGFALS; 16p13.3), thus supporting a role for ALS in the regulation of the bioavailability of IGFs during postnatal growth. OBJECTIVE We present the molecular and clinical characterization of two novel IGFALS mutations that caused complete ALS deficiency in three unrelated patients with postnatal growth deficit, low IGF-I and IGFBP-3 levels, and no GH deficiency. RESULTS IGFALS mutation screening identified a novel homozygous IGFALS missense mutation, which altered a conserved residue, N276S, in two of the probands. The third proband presented a novel homozygous nonsense mutation, Q320X, that is predicted to generate a severely truncated ALS protein. The affected probands presented a similar phenotype characterized by a moderate postnatal growth deficit associated with undetectable ALS, low IGF-I, IGF-II, and IGFBP-3, and hyperinsulinemia, and, in two cases, delayed puberty. CONCLUSIONS Primary ALS deficiency due to IGFALS mutations should be considered as a possible cause of postnatal growth deficit in IGF-I-deficient patients in the absence of GH deficiency or insensitivity. Determination of serum ALS levels and basal insulinemia can be helpful in the differential diagnosis of patients with idiopathic IGF-I deficiency.


European Journal of Human Genetics | 2012

Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature

Sara Benito-Sanz; Miriam Aza-Carmona; Amaya Rodríguez-Estevez; Ixaso Rica-Etxebarria; Ricardo Gracia; Angel Campos-Barros; Karen E. Heath

Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ∼60% of Léri-Weill dyschondrosteosis (LWD) and ∼5–15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ∼286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.


The Journal of Clinical Endocrinology and Metabolism | 2010

Impact of Heterozygosity for Acid-Labile Subunit (IGFALS) Gene Mutations on Stature: Results from the International Acid-Labile Subunit Consortium

Olga V. Fofanova-Gambetti; Vivian Hwa; Jan M. Wit; Horacio M. Domené; Jesús Argente; Peter Bang; Wolfgang Högler; Susan Kirsch; Catherine Pihoker; Harvey K. Chiu; Laurie E. Cohen; Christina M. Jacobsen; Héctor G. Jasper; Gabriele Haeusler; Angel Campos-Barros; Elena Gallego-Gomez; Ricardo Gracia-Bouthelier; Hermine A. van Duyvenvoorde; Jesús Pozo; Ron G. Rosenfeld

CONTEXT To date, 16 IGFALS mutations in 21 patients with acid-labile subunit (ALS) deficiency have been reported. The impact of heterozygosity for IGFALS mutations on growth is unknown. OBJECTIVE The study evaluates the impact of heterozygous expression of IGFALS mutations on phenotype based on data collected by the International ALS Consortium. SUBJECTS/METHODS Patient information was derived from the IGFALS Registry, which includes patients with IGFALS mutations and family members who were either heterozygous carriers or homozygous wild-type. Within each family, the effect of IGFALS mutations on stature was analyzed as follows: 1) effect of two mutant alleles (2ALS) vs. wild-type (WT); 2) effect of two mutant alleles vs. one mutant allele (1ALS); and 3) effect of one mutant allele vs. wild-type. The differences in height sd score (HtSDS) were then pooled and evaluated. RESULTS Mean HtSDS in 2ALS was -2.31 +/- 0.87 (less than -2 SDS in 62%); in 1ALS, -0.83 +/- 1.34 (less than -2 SDS in 26%); and in WT, -1.02 +/- 1.04 (less than -2 SDS in 12.5%). When analyses were performed within individual families and pooled, the difference in mean HtSDS between 2ALS and WT was -1.93 +/- 0.79; between 1ALS and WT, -0.90 +/- 1.53; and between 2ALS and 1ALS, -1.48 +/- 0.83. CONCLUSIONS Heterozygosity for IGFALS mutations results in approximately 1.0 SD height loss in comparison with wild type, whereas homozygosity or compound heterozygosity gives a further loss of 1.0 to 1.5 SD, suggestive of a gene-dose effect. Further studies involving a larger cohort are needed to evaluate the impact of heterozygous IGFALS mutations not only on auxology, but also on other aspects of the GH/IGF system.


Placenta | 2009

CDKN1C Mutations in HELLP/Preeclamptic Mothers of Beckwith–Wiedemann Syndrome (BWS) Patients

Valeria Romanelli; Alberta Belinchón; Angel Campos-Barros; Karen E. Heath; Sixto García-Miñaúr; Víctor Martínez-Glez; Rebeca Palomo; G. Mercado; Ricardo Gracia; Pablo Lapunzina

Preeclampsia is the development of new-onset hypertension with proteinuria after 20 weeks of gestation. HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet count) is a severe form of preeclampsia with high rates of neonatal and maternal morbidity. In recent years, loss of function of cdkn1c (a tight-binding inhibitor of G1 cyclin/cyclin-dependent kinase complexes and a negative regulator of cell proliferation) has been observed in several mouse models of preeclampsia. In this paper, we report on three women with HELLP/preeclampsia who had children with Beckwith Wiedemann syndrome, a complex genetic disorder characterised, among other findings, by overgrowth, omphalocele and macroglossia. All three children displayed mutations in CDKN1C predicted to generate truncated proteins. Two of the mutations were maternally inherited while the third was de novo. This finding suggests a fetal contribution to the maternal disease. To the best of our knowledge this is the first report of CDKN1C mutations in children born to women with preeclampsia/HELLP syndrome, thus suggesting the involvement of an imprinted gene in the pathophysiology of preeclampsia.


Human Molecular Genetics | 2011

SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer

Miriam Aza-Carmona; Debbie Shears; Patricia Yuste-Checa; Verónica Barca-Tierno; Alberta Belinchón; Sara Benito-Sanz; J. Ignacio Rodríguez; Jesús Argente; Angel Campos-Barros; Peter J. Scambler; Karen E. Heath

SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signalling pathways, we performed a yeast two-hybrid screen to identify SHOX-interacting proteins. Two transcription factors, SOX5 and SOX6, were identified. Co-immunoprecipitation assays confirmed the existence of the SHOX-SOX5 and SHOX-SOX6 interactions in human cells, whereas immunohistochemical studies demonstrated the coexpression of these proteins in 18- and 32-week human fetal growth plates. The SHOX homeodomain and the SOX6 HMG domain were shown to be implicated in the SHOX-SOX6 interaction. Moreover, different SHOX missense mutations, identified in LWD and ISS patients, disrupted this interaction. The physiological importance of these interactions was investigated by studying the effect of SHOX on a transcriptional target of the SOX trio, Agc1, which encodes one of the main components of cartilage, aggrecan. Our results show that SHOX cooperates with SOX5/SOX6 and SOX9 in the activation of the upstream Agc1 enhancer and that SHOX mutations affect this activation. In conclusion, we have identified SOX5 and SOX6 as the first two SHOX-interacting proteins and have shown that this interaction regulates aggrecan expression, an essential factor in chondrogenesis and skeletal development.


Neuropsychopharmacology | 1997

Effects of lithium and carbamazepine on thyroid hormone metabolism in rat brain

Andreas Baumgartner; Graziano Pinna; Luis Hiedra; Ursula Gaio; Carsten Hessenius; Angel Campos-Barros; Murat Eravci; Hans Prengel; Rudy Thoma; Harald Meinhold

The effects of lithium (LI) and carbamazepine (CBM) on thyroid hormone metabolism were investigated in 11 regions of the brain and three peripheral tissues in rats decapitated at three different times of day (4:00 a.m., 1:00 p.m., and 8:00 p.m.). Interest was focused on the changes in the two enzymes that catalyze: (1) the 5′deiodination of T4 to the biologically active T3, i.e., type II 5′deiodinase (5′D-II) and (2) the 5 (or inner-ring) deiodination of T3 to the biologically inactive 3′3-T2, i.e., type III 5 deiodinase (5D-III). A 14-day treatment with both LI and CBM induced significant reductions in 5D-III activity. However, 5′D-II activity was elevated by CBM and reduced by LI, both administered in concentrations leading to serum levels comparable with those seen in the prophylactic treatment of affective disorders. The effects were dose dependent, varied according to the region of the brain under investigation, and strongly depended on the time of death within the 24-hour rhythm. The consequences of these complex effects of LI and CBM on deiodinase activities for thyroid hormone function in the CNS and also their possible involvement in the mechanisms underlying the mood-stabilizing effects of both LI and CBM remain to be investigated.


American Journal of Human Genetics | 2006

Characterization of SHOX Deletions in Léri-Weill Dyschondrosteosis (LWD) Reveals Genetic Heterogeneity and No Recombination Hotspots

Sara Benito-Sanz; Darya Gorbenko del Blanco; Céline Huber; N. Simon Thomas; Miriam Aza-Carmona; David J. Bunyan; Vivienne Maloney; Jesús Argente; Valérie Cormier-Daire; Angel Campos-Barros; Karen E. Heath

In the July 2005 and March 2006 issues of the Journal, Schneider et al.1 and Zinn et al.,2 respectively, reported mapping studies of SHOX (MIM 312865) deletions in patients with Leri-Weill dyschondrosteosis (LWD [MIM 127300]). In their study, Schneider et al.1 reported that the majority (73%) of patients with LWD who had SHOX deletions shared a 3? deletion breakpoint hotspot located downstream of SHOX. Zinn et al.2 identified a different 3? breakpoint hotspot located several hundred kilobases farther downstream in 86% of Hispanic patients, whereas the recombination hotspot described by Schneider et al.1 was not observed. We characterized the SHOX deletion limits in a cohort of 48 European patients with LWD (n=47) and Langer mesomelic dysplasia (LMD [MIM 249700]) (n=1). SHOX deletions were originally detected by multiplex ligation probe amplification (MLPA) (MRC Holland) or microsatellite analysis (DXYS10092, DXYS201, DYS290, DXYS10093, DXYS233, and DXYS234) and subsequently were finely mapped using a dense panel of microsatellites and SNPs.3 Four newly identified microsatellites (Tandem Repeat Finder), located 133, 54, 31, and 19 kb 5? of SHOX (table 1), and 59 SNPs, 12 of which were previously unreported (table 2), were analyzed.

Collaboration


Dive into the Angel Campos-Barros's collaboration.

Top Co-Authors

Avatar

Karen E. Heath

Hospital Universitario La Paz

View shared research outputs
Top Co-Authors

Avatar

Sara Benito-Sanz

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jesús Argente

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Alberta Belinchón

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Miriam Aza-Carmona

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pablo Lapunzina

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ricardo Gracia

Hospital Universitario La Paz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge