Angel R. Hernandez-Martinez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angel R. Hernandez-Martinez.
International Journal of Molecular Sciences | 2011
Angel R. Hernandez-Martinez; M. Estevez; Susana Vargas; Fracisco Quintanilla; Rogelio Rodríguez
The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis’ bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO2 thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density JSC of 2.29 mA/cm2 using an irradiation of 100 mW/cm2 at 25 °C.
International Journal of Molecular Sciences | 2013
Angel R. Hernandez-Martinez; M. Estevez; Susana Vargas; Rogelio Rodríguez
Dye-Sensitized Solar Cells (DSSCs), based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE) with Tetraethylorthosilicate (TEOS), are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time.
Molecules | 2014
Gustavo Molina; Angel R. Hernandez-Martinez; Manuel Cortez-Valadez; Fernando García‐Hernandez; M. Estevez
A novel, simple and inexpensive modification method using TEOS to increase the UV light, pH and temperature stability of a red-beet-pigment extracted from Beta vulgaris has been proposed. The effects on the molecular structure of betalains were studied by FTIR spectroscopy. The presence of betacyanin was verified by UV-Vis spectroscopy and its degradation in modified red-beet-pigment was evaluated and compared to the unmodified red-beet-pigment; performance improvements of 88.33%, 16.84% and 20.90% for UV light, pH and temperature stability were obtained, respectively,. Measurements of reducing sugars, phenol, and antioxidant contents were performed on unmodified and modified red-beet-pigment and losses of close to 21%, 54% and 36%, respectively, were found to be caused by the addition of TEOS. Polar diagrams of color by unmodified and modified red-beet-pigment in models of a beverage and of a yogurt were obtained and the color is preserved, although here is a small loss in the chromaticity parameter of the modified red-beet-pigment.
Materials Science and Engineering: C | 2016
G. López-Calzada; Angel R. Hernandez-Martinez; Martha Elena Cruz-Soto; M. Ramírez-Cardona; D. Rangel; Gustavo Molina; Gabriel Luna-Bárcenas; M. Estevez
Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration.
Journal of Colloid and Interface Science | 2016
Hayde Vergara-Castañeda; Angel R. Hernandez-Martinez; M. Estevez; Sandra Mendoza; Gabriel Luna-Barcenas; Hector Pool
The aim of this work is to formulate biofunctional hybrid materials (HMs) with quercetin (QC) and silica particles (SiPs) by simple methods such as sol-gel and QC conjugation. Physicochemical characterization included particle size, zeta potential (ζ), FTIR and SEM imaging. Spherical particles with ca. 115 nm in diameter were produced, ζ and FTIR demonstrated that QC conjugation was successfully achieved. Electrochemical analyses performed by cyclic voltammetry (CV) suggested that potential binding sites between QC and SiPs may be at functional groups from A ring or C ring, affecting the transfer electron of resorcinol moiety. Iron chelating activity and lipid peroxidation assays showed that after conjugation to SiPs, QC decreased its metal chelating activity, but anti-radical properties is maintained. Our results demonstrated that our proposed method is simple and effective to obtain bio-functional HMs. Our findings prove to be useful in the design of protective approaches against lipid oxidation in food, pharmaceutical, and cosmetics fields.
Advances in Condensed Matter Physics | 2015
Alvaro Ruíz-Baltazar; Simón Yobanny Reyes-López; R. Esparza; M. Estevez; Angel R. Hernandez-Martinez; G. Rosas; R. Pérez
The synthesis of α-Fe2O3-Ag bimetallic nanoparticles using a novel and simplified route is presented in this work. These hybrid nanoparticles were produced using a modification of the chemical reduction method by sodium borohydride (NaBH4). Fe(III) chloride hexahydrate (FeCl3·6H2O) and silver nitrate (AgNO3) as precursors were employed. Particles with semispherical morphology and dumbbell configuration were observed. High-resolution transmission electron microscopy (HRTEM) technique reveals the structure of the dumbbell-like α-Fe2O3-Ag nanoparticles. Some theoretical models further confirm the formation of the α-Fe2O3-Ag structures. Analysis by cyclic voltammetry reveals an interesting catalytic behavior which is associated with the combination of the individual properties of the Ag and α-Fe2O3 nanoparticles.
Journal of Materials Science | 2017
Angel R. Hernandez-Martinez; D. Torres; Gustavo Molina; R. Esparza; F. Quintanilla; F. Martínez-Bustos; M. Estevez
Abstract In a previous work, we obtained a betalain red dye from Beta vulgaris L. (beet) encapsulated with tetraethyl orthosilicate (TEOS) and studied its stabilities against changes of UV light, pH, and temperature. In the current research, we prepared betalain dyes from B. vulgaris L. and Myrtillocactus geometrizans (bilberry cactus), then we studied the effect of TEOS in the chemical structure by STEM and EDS analyses and its performance compared with a commercial dye FD&C Red 40. STEM showed an inorganic material surrounding an organic material and EDS of the inorganic part showed Si and O presence (dye encapsulation). Encapsulated dyes were more resistant to UV light than FD&C Red 40 and less resistant against pH and temperature changes. M. geometrizans had the highest nutraceutical content; it is not comparable in color appearance with FD&C Red 40, but its degradation is minimal, and in the yogurt model system, it is similar to the colorant of commercial strawberry yogurt. As a result, the red dye from M. geometrizans is a viable alternative to production in large scale.
Journal of Colloid and Interface Science | 2017
Lorena Farías-Cepeda; Jorge Herrera-Ordonez; Angel R. Hernandez-Martinez; M. Estevez; Lucero Rosales-Marines
The styrene (St) emulsion polymerization using Aerosol MA80 as surfactant and in the presence of sodium styrene sulfonate (NaSS) was studied. The effect of NaSS content was assessed using MA80 concentrations below and at the critical micellar concentration. It was found that at the higher NaSS and MA80 contents, the number of particles (N) reaches a maximum of the order of 1017particles/cm3 water, a huge value that has never been reported. In this work an explanation for this super-enhanced particle nucleation phenomenon is proposed. Such hypothesis is based on the role of St-NaSS oligomers formed in the aqueous phase and their synergy with MA80 molecules to provide colloidal stability to the system. The proposal seems to be consistent with the experimental data obtained for the evolution of monomer conversion, N, particles size distribution and the wideness of this latter as well as with a theoretical estimation of the N.
Molecules | 2018
Guillermo Espinosa‐Acosta; Ana Ramos-Jacques; Gustavo Molina; Jose Maya-Cornejo; R. Esparza; Angel R. Hernandez-Martinez; Itari Sánchez-González; M. Estevez
Anthocyanins are used for food coloring due their low toxicity and health benefits. They are extracted from different sources, but black carrot has higher anthocyanin content compared with common fruits and vegetables. Here, we study alcoholic anthocyanin extracts from black carrot to enhance their stability. The objective of our research is to determine if microencapsulation with tetraethyl orthosilicate (TEOS) is a feasible option for preventing black carrot anthocyanin degradation. Extraction solvents were solutions of (1) ethanol/acetic acid and (2) ethanol/citric acid. Samples were purified through a resin column and microencapsulated using TEOS. Fourier Transformed Infrared Spectroscopy (FTIR) spectra of samples were obtained, and degradation studies were performed under different conditions of UV radiation, pH and temperature. Antioxidant activity was evaluated with radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and electrochemical cupric reducing antioxidant capacity (CUPRAC). Color evaluation on food models were performed with CIE Lab at the beginning of experiments and after 25 days of storage. Results indicate that the more stable extracts against pH media changes are samples obtained with ethanol/acetic acid solution as extraction solvent. Extract purification through resin and TEOS microencapsulation had no significant effect on extract stability. In conclusion, although TEOS microencapsulation has proven to be effective for some dried materials from natural extracts in our previous research, we do not recommend its use for black carrot extracts considering our results in this particular case.
Molecules | 2017
Angel R. Hernandez-Martinez; Gustavo Molina; Luis Jiménez-Hernández; Adrian Oskam; Gerardo Fonseca; M. Estevez
Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO2) composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO2, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR) spectra, scanning electron microscopy (SEM) micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb2+). Material characterization indicates that polysaccharides were distributed in polyurethane’s external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.