Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angel Zarain-Herzberg is active.

Publication


Featured researches published by Angel Zarain-Herzberg.


Molecular and Cellular Biochemistry | 1994

SARCOPLASMIC RETICULUM CALSEQUESTRINS : STRUCTURAL AND FUNCTIONAL PROPERTIES

Kenichi Yano; Angel Zarain-Herzberg

Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its α-helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.


Molecular and Cellular Biochemistry | 1996

Decreased expression of cardiac sarcoplasmic reticulum Ca2+-pump ATPase in congestive heart failure due to myocardial infarction

Angel Zarain-Herzberg; Nasir Afzal; Vijayan Elimban; Naranjan S. Dhalla

Myocardial infarction in rats induced by occluding the left coronary artery for 4, 8 and 16 weeks has been shown to result in congestive heart failure (CHF) characterized by hypertrophy of the viable ventricular myocardial tissue. We have previously demonstrated a decreased calcium transport activity in the sarcoplasmic reticulum (SR) of post-myocardial infarction failing rat hearts. In this study we have measured the steady state levels of the cardiac SR Ca2+-pump ATPase (SERCA2) mRNA using Northern blot and slot blot analyses. The relative amounts of SERCA2 mRNA were decreased with respect to GAPDH mRNA and 28 S rRNA in experimental failing hearts at 4 and 8 weeks post myocardial infarction by about 20% whereas those at 16 weeks declined by about 35% of control values. The results obtained by Western blot analysis, revealed that the immunodetectable levels of SERCA2 protein in 8 and 16 weeks postinfarcted animals were decreased by about 20% and 30%, respectively. The left ventricular SR Ca2+-pump ATPase specific activity was depressed in the SR preparations of failing hearts as early as 4 weeks post myocardial infarction and declined by about 65% at 16 weeks compared to control. These results indicate that the depressed SR Ca2+-pump ATPase activity in CHF may partly be due to decreased steady state amounts of SERCA2 mRNA and SERCA2 protein in the failing myocardium.


Molecular Endocrinology | 2012

PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress.

Tatsuyoshi Kono; Geonyoung Ahn; Dan R. Moss; Liann Gann; Angel Zarain-Herzberg; Yurika Nishiki; Patrick T. Fueger; Takeshi Ogihara; Carmella Evans-Molina

The maintenance of intracellular Ca(2+) homeostasis in the pancreatic β-cell is closely regulated by activity of the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) pump. Our data demonstrate a loss of β-cell SERCA2b expression in several models of type 2 diabetes including islets from db/db mice and cadaveric diabetic human islets. Treatment of 832/13 rat INS-1-derived cells with 25 mm glucose and the proinflammatory cytokine IL-1β led to a similar loss of SERCA2b expression, which was prevented by treatment with the peroxisome proliferator-activated receptor (PPAR)-γ agonist, pioglitazone. Pioglitazone was able to also protect against hyperglycemia and cytokine-induced elevations in cytosolic Ca(2+) levels, insulin-secretory defects, and cell death. To determine whether PPAR-γ was a direct transcriptional regulator of the SERCA2 gene, luciferase assays were performed and showed that a -259 bp region is sufficient to confer PPAR-γ transactivation; EMSA and chromatin immunoprecipitation experiments confirmed that PPAR-γ directly binds a PPAR response element in this proximal region. We next sought to characterize the mechanisms by which SERCA2b was down-regulated. INS-1 cells were exposed to high glucose and IL-1β in time course experiments. Within 2 h of exposure, activation of cyclin-dependent kinase 5 (CDK5) was observed and correlated with increased serine-273 phosphorylation of PPAR-γ and loss of SERCA2 protein expression, findings that were prevented by pioglitazone and roscovitine, a pharmacological inhibitor of CDK5. We conclude that pioglitazone modulates SERCA2b expression through direct transcriptional regulation of the gene and indirectly through prevention of CDK5-induced phosphorylation of PPAR-γ.


Expert Opinion on Investigational Drugs | 2002

Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target

Angel Zarain-Herzberg; Heinz Rupp

Inhibitors of carnitine palmitoyl-transferase I (CPT I), the key enzyme for the transport of long-chain acyl-coenzyme A (acyl-CoA) compounds into mitochondria, have been developed as agents for treating diabetes mellitus Type 2. Findings that the CPT I inhibitor, etomoxir, has effects on overloaded heart muscle, which are associated with an improved function, were unexpected and can be attributed to selective changes in the dysregulated gene expression of hypertrophied cardiomyocytes. Also, the first clinical trial with etomoxir in patients with heart failure showed that etomoxir improved the clinical status and several parameters of heart function. In view of the action of etomoxir on gene expression, putative molecular mechanisms involved in an increased expression of SERCA2, the Ca2+ pump of sarcoplasmic reticulum (SR) and α-myosin heavy chain (MHC) of failing overloaded heart muscle are described. The first 225 bp of human, rabbit, rat and mouse SERCA2 promoter sequence have high identity. Various cis-regularory elements are also given for the promoter of the rat cardiac α-MHC gene. It is hypothesised that etomoxir increases glucose-phosphate intermediates resulting in activation of signalling pathway(s) mediated by phosphatases. Regarding the possible direct action of etomoxir on peroxisome proliferator activated receptor alpha (PPAR-α) activation, it could upregulate the expression of various enzymes that participate in beta-oxidation, thereby modulating some effects of CPT 1 inhibition. Any development of alternative drugs requires a better understanding of the signal pathways involved in the altered gene expression. In particular, signals need to be identified which are altered in overloaded hearts and can selectively be re-activated by etomoxir.


Iubmb Life | 2011

Calcium-regulated transcriptional pathways in the normal and pathologic heart.

Angel Zarain-Herzberg; Jorge Fragoso-Medina; Rafael Estrada-Avilés

The cytosolic calcium concentration ([Ca2+]c) is key for the regulation of many cellular processes, such cell signaling and proliferation, metabolism, and muscle contraction. In cardiomyocytes, Ca2+ is an important regulator in many cellular functions such electrophysiological processes, excitation‐contraction coupling, regulation of contractile proteins activity, energy metabolism, cell death, and transcriptional regulation by the activation of Ca2+‐dependent transcriptional pathways. In cardiomyocytes, the two main Ca2+‐dependent pathways are the Ca2+/calmodulin‐calcineurin‐NFAT and the Ca2+/calmodulin‐dependent kinases‐MEF2. Both pathways are involved in the transcriptional control of many cardiac genes. Cardiac hypertrophy (CH) and heart failure (HF) are characterized by alterations in calcium handling such a low sarcoplasmic reticulum Ca2+ content, decreased rate of Ca2+ removal from the sarcoplasm, increased diastolic [Ca2+]c, and decreased systolic [Ca2+]c, all of them contributing to diminished contractibility and force generation in failing heart. At gene expression level, there are also many changes such decreased levels of SERCA2a and activation of a fetal gene expression program in cardiomyocytes. A variety of Ca2+‐dependent signaling pathways have been implicated in CH and HF, but whether these pathways are interrelated and whether there is specificity among them are still unclear and under investigation. The focus of this review is to make an analysis of the current knowledge about the role of Ca2+ signaling pathways in the regulation of cardiac gene expression making special emphasis in novel strategies to correct Ca2+ handling alterations by means of SERCA2a gene therapy.


The Scientific World Journal | 2002

Sarco(endo)plasmic reticulum Ca2+-ATPase-2 gene: structure and transcriptional regulation of the human gene.

Angel Zarain-Herzberg; Georgina Alvarez-Fernández

The sarco(endo)plasmic reticulum Ca-ATPases (SERCAs) belong to a family of active calcium transport enzymes encoded by the SERCA1, 2, and 3 genes. In this study, we describe the complete structure of the human SERCA2 gene and its 5’ -regulatory region. The hSERCA2 gene is located in chromosome 12 position q24.1 in Contig NT_009770.8, spans 70 kb, and is organized in 21 exons intervened by 20 introns. The last two exons of the pre-mRNA produce by alternatively splicing the cardiac/slow-twitch muscle-specific SERCA2a isoform and the ubiquitous SERCA2b isoform. The sequence of the proximal 225-bp regulatory region of the SERCA2 genes is 80% G+C-rich and is conserved among human, rabbit, rat, and mouse species. It contains a TATA-like-box, an E-box/USF sequence, a CAAT-box, four Sp1 binding sites, and a thyroid hormone responsive element (TRE). There are two other conserved regulatory regions located between positions -410 to -661 bp and from -919 to -1410 bp. Among the DNA cis-elements present in these two regulatory regions there are potential binding sites for: GATA-4, -5, -6, Nkx-2.5/Csx, OTF-1, USF, MEF-2, SRF, PPAR/RXR, AP-2, and TREs. Upstream from position -1.5 kb, there is no significant homology among the SERCA2 genes cloned. In addition, the human gene has several repeated sequences mainly of the Alu and L2 type located upstream from position -1.7 kb, spanning in a continuous fashion for more than 40 kb. In this study, we report the cloning of 2.4 kb of 5’-regulatory region and demonstrate that the proximal promoter region is sufficient for expression in cardiac myocytes, and the region from -225 to -1232 bp contains regulatory DNA elements which down-regulate the expression of the SERCA2 gene in neonatal cardiomyocytes.


Cell Calcium | 2014

Regulation of SERCA pumps expression in diabetes.

Angel Zarain-Herzberg; Gerardo García-Rivas; Rafael Estrada-Avilés

Cytosolic calcium concentration ([Ca(2+)]c) is fundamental for regulation of many cellular processes such metabolism, proliferation, muscle contraction, cell signaling and insulin secretion. In resting conditions, the sarco/endoplasmic reticulum (ER/SR) Ca(2+) ATPases (SERCA) transport Ca(2+) from the cytosol to the ER or SR lumen, maintaining the resting [Ca(2+)]c about 25-100nM. A reduced activity and expression of SERCA2 protein have been described in heart failure and diabetic cardiomyopathy, resulting in an altered Ca(2+) handling and cardiac contractility. In the diabetic pancreas, there has been reported reduction in SERCA2b and SERCA3 expression in β-cells, resulting in diminished insulin secretion. Evidence obtained from different diabetes models has suggested a role for advanced glycation end products formation, oxidative stress and increased O-GlcNAcylation in the lowered SERCA2 expression observed in diabetic cardiomyopathy. However, the role of SERCA2 down-regulation in the pathophysiology of diabetes mellitus and diabetic cardiomyopathy is not yet well described. In this review, we make a comprehensive analysis of the current knowledge of the role of the SERCA pumps in the pathophysiology of insulin-dependent diabetes mellitus type 1 (TIDM) and type 2 (T2DM) in the heart and β-cells in the pancreas.


Canadian Journal of Physiology and Pharmacology | 2012

Regulation of sarco(endo)plasmic reticulum Ca2+-ATPase and calsequestrin gene expression in the heart

Angel Zarain-Herzberg; Rafael Estrada-Avilés; Jorge Fragoso-Medina

The precise control of Ca(2+) levels during the contraction-relaxation cycle in cardiac myocytes is extremely important for normal beat-to-beat contractile activity. The sarcoplasmic reticulum (SR) plays a key role controlling calcium concentration in the cytosol. The SR Ca(2+)-ATPase (SERCA2) transports Ca(2+) inside the SR lumen during relaxation of the cardiac myocyte. Calsequestrin (Casq2) is the main protein in the SR lumen, functioning as a Ca(2+) buffer and participating in Ca(2+) release by interacting with the ryanodine receptor 2 (RyR2) Ca(2+)-release channel. Alterations in normal Ca(2+) handling significantly contribute to the contractile dysfunction observed in cardiac hypertrophy and in heart failure. Transcriptional regulation of the SERCA2 gene has been extensively studied and some of the mechanisms regulating its expression have been elucidated. Overexpression of Sp1 factor in cardiac hypertrophy downregulates SERCA2 gene expression and increased levels of thyroid hormone up-regulates its transcription. Other hormones such norepinephrine, angiotensin II, endothelin-1, parathyroid hormone, prostaglandin-F2α, as well the cytokines tumor necrosis factor-α and interleukin-6 also downregulate SERCA2 expression. Calcium acting through the calcineurin-NFAT (nuclear factor of activated T cells) pathway has been suggested to regulate SERCA2 and CASQ2 gene expression. This review focuses on the current knowledge regarding transcriptional regulation of SERCA2 and CASQ2 genes in the normal and pathologic heart.


Journal of Biological Chemistry | 2014

Pancreatic and Duodenal Homeobox Protein 1 (Pdx-1) Maintains Endoplasmic Reticulum Calcium Levels through Transcriptional Regulation of Sarco-endoplasmic Reticulum Calcium ATPase 2b (SERCA2b) in the Islet β Cell

Justin S. Johnson; Tatsuyoshi Kono; Xin Tong; Wataru Yamamoto; Angel Zarain-Herzberg; Matthew J. Merrins; Leslie S. Satin; Patrick Gilon; Carmella Evans-Molina

Background: Altered sarco-endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) expression and activity contributes to β cell dysfunction in diabetes. Results: SERCA2b deficiency occurs secondary to loss of pancreatic and duodenal homeobox 1 (Pdx-1)-mediated transcriptional regulation. Conclusion: Pdx-1 maintains SERCA2b expression and endoplasmic reticulum (ER) calcium levels in the β cell. Significance: These findings elucidate a novel pathway that contributes to β cell ER stress. Although the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in β cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of β cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/− mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca2+ regulation in Pdx-1-deficient states.


Molecular and Cellular Biochemistry | 1996

ANALYSIS OF MRNA EXPRESSION AND CLONING OF A NOVEL PLASMA MEMBRANE CA2+-ATPASE SPLICE VARIANT IN HUMAN HEART

Juan Santiago-García; Jaime Mas-Oliva; Dolores Saavedra; Angel Zarain-Herzberg

Four different plasma membrane CA2+-ATPase (PMCA) genes and three sarco(endo)plasmic reticulum Ca 2+-ATPase (SERCA) genes have been previously cloned and characterized. In this study we have investigated the expression of the mRNA encoding the various PMCA and SERCA proteins in fetal and adult human heart and placenta by the reverse-transcriptase-polymerase chain-reaction (RT PCR) and cDNA cloning. We have found that PMCA1 and PMCA4 genes were expressed in 8-, 12- and 20-week fetal heart and in adult heart. PMCA2 gene was expressed at low levels in adult heart but was not detected in fetal heart. PMCA3 mRNA was not detected in the heart nor placenta. In contrast, the mRNA encoding SERCA2a, SERCA2b and SERCA3 were expressed in all cardiac developmental stages. Multiple alternatively spliced mRNA transcripts which differ at splice site A and B/C of the PMCA 1, PMCA2 and PMCA4 genes were detected in the human heart. Interestingly, a novel tissue specific variant of the PMCA4 gene was detected in both fetal and adult human heart but not in placenta that accounts for about 30% of the total PMCA4 mRNA variant expression. DNA sequence analysis of this novel variant revealed that it corresponds to the equivalent of the PMCA 1 d variant and accordingly we have named it PMCA4d. We cloned and sequenced eight cDNA inserts encoding for the PMCA 1 and PMCA4 variants from a fetal human heart cDNA library confirming that these are the two main PMCA genes expressed in cardiac muscle.

Collaboration


Dive into the Angel Zarain-Herzberg's collaboration.

Top Co-Authors

Avatar

Gabriela Rodríguez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Reyes-Juárez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Moreno-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jorge Fragoso-Medina

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Estrada-Avilés

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge