Angel Zeininger
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angel Zeininger.
American Journal of Physical Anthropology | 2017
Angel Zeininger; Liza J. Shapiro; David A. Raichlen
OBJECTIVES Digitigrade hand and foot postures and extended elbows and knees are considered adaptations to running in cursorial mammals because they increase effective limb lengths (ELLs). However, the relationship between digitigrady and ELL in primates is not well understood. We documented the ontogeny of limb postures in baboons to better understand the function of digitigrady during walking. We hypothesized that the hand and foot would become more elevated and the elbow and knee more extended, leading to increased relative ELLs throughout ontogeny. MATERIALS AND METHODS Longitudinal kinematic data were collected on four infant yellow baboons (Papio cynocephalus) as they aged from two to nine months, and again at two to three years. Hand/foot postures, elbow/knee angles, relative fore/hind limb ELLs, and dimensionless velocity were measured for 404 symmetrical walking strides. RESULTS Digitigrade hand and foot postures were preferred at all ages. The elbow extended slightly and the knee flexed slightly with age. Elevated proximal hands, extended elbows, and extended knees were associated with long relative ELLs. For a given age, relative hind limb ELL was longer than relative forelimb ELL. DISCUSSION In the forelimb, digitigrade hand postures and extended elbows function to increase relative ELL at slow walking velocity. Increased forelimb ELL may be an attempt to equalize forelimb and hind limb ELLs in baboons with an absolutely longer hind limb. Pedal digitigrady is not a main contributing factor to hind limb ELL. Results suggest that manual and pedal digitigrady in terrestrial cercopithecoids does not function to increase velocity.
Archive | 2016
Daniel Schmitt; Angel Zeininger; Michael C. Granatosky
Primates are defined, in part, by the presence of a grasping hand that couples primitive anatomy with exceptional neuromuscular dexterity. This arrangement is maintained across the evolutionary history of primates, and is often seen as one of the key features that allow primates to make fluid transitions from one substrate to another, make kinematic adjustments with changes in speed and gait, and to make biomechanical adjustments throughout ontogeny. This chapter surveys the exceptional diversity of primate hand positions across locomotor modes, and provides a perspective on the organization of hand positioning based on underlying biomechanical similarities. Across primates, hand positions are highly variable, and multiple solutions to same locomotor challenges are observed. This mechanical flexibility appears to be an adaptive feature of the primate hand, and suggests much of the success of the primate radiation has to do with maintaining generalized ‘cheiridial compromise’ that allows locomotor versatility.
American Journal of Physical Anthropology | 2016
M. Loring Burgess; Daniel Schmitt; Angel Zeininger; Shannon C. McFarlin; John D. Polk; Christopher B. Ruff
OBJECTIVES Previous studies suggest that the postures habitually adopted by an animal influence the mechanical loading of its long bones. Relatively extended limb postures in larger animals should preferentially reduce anteroposterior (A-P) relative to mediolateral (M-L) bending of the limb bones and therefore decrease A-P/M-L rigidity. We test this hypothesis by examining growth-related changes in limb bone structure in two primate taxa that differ in ontogenetic patterns of joint posture. MATERIALS AND METHODS Knee and elbow angles of adult and immature vervets (Chlorocebus aethiops, n = 16) were compared to published data for baboons (Papio hamadryas ursinus, n = 33, Patel et al., ). Ontogenetic changes in ratios of A-P/M-L bending rigidity in the femur and humerus were compared in skeletal samples (C. aethiops, n = 28; P. cynocephalus, n = 39). Size changes were assessed with linear regression, and age group differences tested with ANOVA. RESULTS Only the knee of baboons shows significant postural change, becoming more extended with age and mass. A-P/M-L bending rigidity of the femur decreases during ontogeny in immature and adult female baboons only. Trends in the humerus are less marked. Adult male baboons have higher A-P/M-L bending rigidity of the femur than females. CONCLUSIONS The hypothesized relationship between more extended joints and reduced A-P/M-L bending rigidity is supported by our results for immature and adult female baboon hind limbs, and the lack of significant age changes in either parameter in forelimbs and vervets. Adult males of both species depart from general ontogenetic trends, possibly due to socially mediated behavioral differences between sexes. Am J Phys Anthropol 161:72-83, 2016.
The Journal of Experimental Biology | 2018
Michael C. Granatosky; Aidan Z Fitzsimons; Angel Zeininger; Daniel Schmitt
ABSTRACT During quadrupedal walking in most animals, the forelimbs play a net braking role, whereas the hindlimbs are net propulsive. However, the mechanism by which this differentiation occurs remains unclear. Here, we test two models to explain this pattern using primates and felines: (1) the horizontal strut effect (in which limbs are modeled as independent struts), and (2) the linked strut model (in which limbs are modeled as linked struts with a center of mass in between). Video recordings were used to determine point of contact, timing of mid-stance, and limb protraction/retraction duration. Single-limb forces were used to calculate contact time, impulses and the proportion of the stride at which the braking-to-propulsive transition (BP) occurred for each limb. We found no association between the occurrence of the BP and mid-stance, little influence of protraction and retraction duration on the braking–propulsive function of a limb, and a causative relationship between vertical force distribution between limbs and the patterns of horizontal forces. These findings reject the horizontal strut effect, and provide some support for the linked strut model, although predictions were not perfectly matched. We suggest that the position of the center of mass relative to limb contact points is a very important, but not the only, factor driving functional differentiation of the braking and propulsive roles of the limbs in quadrupeds. It was also found that primates have greater differences in horizontal impulse between their limbs compared with felines, a pattern that may reflect a fundamental arboreal adaptation in primates. Summary: Theoretical models and empirical results reveal that functional differentiation of the limbs of quadrupeds in terms of net braking and propulsive roles is driven, in part, by the relative position of the limb point of contact relative to the center of mass.
Gait & Posture | 2018
Angel Zeininger; Daniel Schmitt; Jody L. Jensen; Liza J. Shapiro
The assumption that the morphology of the human calcaneus reflects high and cyclical impact forces at heel strike during adult human walking has never been experimentally tested. Since a walking step with a heel strike is an emergent behavior in children, an ontogenetic study provides a natural experiment to begin testing the relationship between the mechanics of heel strike and calcaneal anatomy. This study examined the ground reaction forces (GRFs) of stepping in children to determine the location of the center of pressure (COP) relative to the calcaneus and the orientation and magnitude of ground reaction forces during foot contact. Three-dimensional kinematic and kinetic data were analyzed for 18 children ranging in age from 11.5 to 43.1 months. Early steppers used a flat foot contact (FFC) and experienced relatively high vertical and resultant GRFs with COP often anterior to the calcaneus. More experienced walkers used an initial heel contact (IHC) in which GRFs were significantly lower but the center of pressure remained under the heel a greater proportion of time. Thus, during FFC the foot experienced higher loading, but the heel itself was relatively wider and the load was distributed more evenly. In IHC walkers load was concentrated on the anterior calcaneus and a narrower heel, suggesting a need for increased calcaneal robusticity during development to mitigate injury. These results provide new insight into foot loading outside of typical mature contact patterns, inform structure-function relationships during development, and illuminate potential causes of heel injury in young walkers.
The 85th Annual Meeting of the American Association of Physical Anthropologists, Atlanta, GA | 2016
Daniel Schmitt; Angel Zeininger; Emma Hamrick; Megan L. Snyder; Tracy L. Kivell; Roshna E. Wunderlich
Leprosy is one of the few specific infectious diseases that can be studied in bioarchaeology due to its characteristic debilitating and disfiguring skeletal changes. Leprosy has been, and continues to be, one of the most socially stigmatising diseases in history, over-riding all other aspects of social identity for the sufferers and frequently resulting in social exclusion. This study examines the stable isotopic evidence of mobility patterns of children, adolescents, and young adult individuals with the lepromatous form of leprosy in Medieval England (10 th –12 th centuries AD) to assess whether the individuals buried with the disease were non-locals, possibly from further afield. Enamel samples from 19 individuals from the St. Mary Magdalen Leprosy Hospital, Winchester (UK) were selected for strontium ( 87 Sr/ 86 6U DQG R[\JHQ į 18 O) stable isotope analysis based on age at death (<30 years), the presence of bone changes associated with lepromatous leprosy, and the underlying geology of their burial locations. The results from these data indicate that the St. Mary Magdalen Leprosy Hospital received an almost equal mixture of local and non-local individuals from further afield, including early pilgrims. At present, the St. Mary Magdalen Leprosy Hospital is the earliest dedicated leprosaria found within Britain and mobility studies such as these can help elucidate and test some of the broader historical notions and identities associated with the movements of those infected with the disease in Medieval England.
Journal of Human Evolution | 2011
Angel Zeininger; Brian G. Richmond; Gideon Hartman
Journal of Human Evolution | 2016
Angel Zeininger; Biren A. Patel; Bernhard Zipfel; Kristian J. Carlson
Comptes Rendus Palevol | 2017
Habiba Chirchir; Angel Zeininger; Masato Nakatsukasa; Richard A. Ketcham; Brian G. Richmond
The 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans | 2017
Neysa Grider-Potter; Angel Zeininger