Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela A. Connelly is active.

Publication


Featured researches published by Angela A. Connelly.


Journal of Experimental Botany | 2014

Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1

Yolanda Maria Gaspar; James A. McKenna; Bruce S. McGinness; J. M. Hinch; Simon Poon; Angela A. Connelly; Marilyn A. Anderson; Robyn Louise Heath

Summary Expression of the plant defensin NaD1 in transgenic cotton plants increases plant survival, disease tolerance, and yield when grown in soil naturally infested with Fusarium oxysporum and Verticillium dahliae. Importantly, transgenic plants did not exhibit any detrimental agronomic features.


BMC Plant Biology | 2014

The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions

Fung T. Lay; Simon Poon; James A. McKenna; Angela A. Connelly; Bruce S. McGinness; Jennifer L Fox; Norelle L. Daly; David J. Craik; Robyn Louise Heath; Marilyn A. Anderson

BackgroundPlant defensins are small (45–54 amino acids), basic, cysteine-rich proteins that have a major role in innate immunity in plants. Many defensins are potent antifungal molecules and are being evaluated for their potential to create crop plants with sustainable disease resistance. Defensins are produced as precursor molecules which are directed into the secretory pathway and are divided into two classes based on the absence (class I) or presence (class II) of an acidic C-terminal propeptide (CTPP) of about 33 amino acids. The function of this CTPP had not been defined.ResultsBy transgenically expressing the class II plant defensin NaD1 with and without its cognate CTPP we have demonstrated that NaD1 is phytotoxic to cotton plants when expressed without its CTPP. Transgenic cotton plants expressing constructs encoding the NaD1 precursor with the CTPP had the same morphology as non-transgenic plants but expression of NaD1 without the CTPP led to plants that were stunted, had crinkled leaves and were less viable. Immunofluorescence microscopy and transient expression of a green fluorescent protein (GFP)-CTPP chimera were used to confirm that the CTPP is sufficient for vacuolar targeting. Finally circular dichroism and NMR spectroscopy were used to show that the CTPP adopts a helical confirmation.ConclusionsIn this report we have described the role of the CTPP on NaD1, a class II defensin from Nicotiana alata flowers. The CTPP of NaD1 is sufficient for vacuolar targeting and plays an important role in detoxification of the defensin as it moves through the plant secretory pathway. This work may have important implications for the use of defensins for disease protection in transgenic crops.


Cell Metabolism | 2017

Excessive Respiratory Modulation of Blood Pressure Triggers Hypertension

Clément Menuet; Sheng Le; Bowen Dempsey; Angela A. Connelly; Jessica L. Kamar; Nikola Jancovski; Jaspreet K. Bassi; Keryn Walters; Annabel E. Simms; Andrew Hammond; Angelina Y. Fong; Ann K. Goodchild; Simon McMullan; Andrew M. Allen

The etiology of hypertension, the worlds biggest killer, remains poorly understood, with treatments targeting the established symptom, not the cause. The development of hypertension involves increased sympathetic nerve activity that, in experimental hypertension, may be driven by excessive respiratory modulation. Using selective viral and cell lesion techniques, we identify adrenergic C1 neurons in the medulla oblongata as critical for respiratory-sympathetic entrainment and the development of experimental hypertension. We also show that a cohort of young, normotensive humans, selected for an exaggerated blood pressure response to exercise and thus increased hypertension risk, has enhanced respiratory-related blood pressure fluctuations. These studies pinpoint a specific neuronal target for ameliorating excessive sympathetic activity during the developmental phase of hypertension and identify a group of pre-hypertensive subjects that would benefit from targeting these cells.


Hypertension | 2013

Stimulation of Angiotensin Type 1A Receptors on Catecholaminergic Cells Contributes to Angiotensin-Dependent Hypertension

Nikola Jancovski; Jaspreet K. Bassi; David Carter; Yan-Ting Choong; Angela A. Connelly; Thu-Phuc Nguyen; Daian Chen; Elena V. Lukoshkova; Clément Menuet; Geoffrey A. Head; Andrew M. Allen

Hypertension contributes to multiple forms of cardiovascular disease and thus morbidity and mortality. The mechanisms inducing hypertension remain unclear although the involvement of homeostatic systems, such as the renin–angiotensin and sympathetic nervous systems, is established. A pivotal role of the angiotensin type 1 receptor in the proximal tubule of the kidney for the development of experimental hypertension is established. Yet, other systems are involved. This study tests whether the expression of angiotensin type 1A receptors in catecholaminergic cells contributes to hypertension development. Using a Cre-lox approach, we deleted the angiotensin type 1A receptor from all catecholaminergic cells. This deletion did not alter basal metabolism or blood pressure but delayed the onset of angiotensin-dependent hypertension and reduced the maximal response. Cardiac hypertrophy was also reduced. The knockout mice showed attenuated activation of the sympathetic nervous system during angiotensin II infusion as measured by spectral analysis of the blood pressure. Increased reactive oxygen species production was observed in forebrain regions, including the subfornical organ, of the knockout mouse but was markedly reduced in the rostral ventrolateral medulla. These studies demonstrate that stimulation of the angiotensin type 1A receptor on catecholaminergic cells is required for the full development of angiotensin-dependent hypertension and support an important role for the sympathetic nervous system in this model.


The Journal of Neuroscience | 2014

Catecholaminergic C3 Neurons Are Sympathoexcitatory and Involved in Glucose Homeostasis

Clément Menuet; Charles P. Sevigny; Angela A. Connelly; Jaspreet K. Bassi; Nikola Jancovski; David A. Williams; Colin R. Anderson; Ida J. Llewellyn-Smith; Angelina Y. Fong; Andrew M. Allen

Brainstem catecholaminergic neurons play key roles in the autonomic, neuroendocrine, and behavioral responses to glucoprivation, yet the functions of the individual groups are not fully understood. Adrenergic C3 neurons project widely throughout the brain, including densely to sympathetic preganglionic neurons in the spinal cord, yet their function is completely unknown. Here we demonstrate in rats that optogenetic stimulation of C3 neurons induces sympathoexcitatory, cardiovasomotor functions. These neurons are activated by glucoprivation, but unlike the C1 cell group, not by hypotension. The cardiovascular activation induced by C3 neurons is less than that induced by optogenetic stimulation of C1 neurons; however, combined stimulation produces additive sympathoexcitatory and cardiovascular effects. The varicose axons of C3 neurons largely overlap with those of C1 neurons in the region of sympathetic preganglionic neurons in the spinal cord; however, regional differences point to effects on different sympathetic outflows. These studies definitively demonstrate the first known function of C3 neurons as unique cardiovasomotor stimulatory cells, embedded in the brainstem networks regulating cardiorespiratory activity and the response to glucoprivation.


Oncotarget | 2017

The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

Rhiannon Coulson; Seng H. Liew; Angela A. Connelly; Nicholas S. Yee; Siddhartha Deb; Beena Kumar; Ana Cristina Vargas; Sandra A. O’Toole; Adam C. Parslow; Ashleigh R. Poh; Tracy Putoczki; Riley J. Morrow; Mariah G. Alorro; Kyren A. Lazarus; Evie F.W. Yeap; Kelly L. Walton; Craig A. Harrison; Natalie J. Hannan; Amee J. George; Colin Clyne; Matthias Ernst; Andrew M. Allen; Ashwini L. Chand

Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour-associated macrophages in Losartan or vehicle-treated mammary tumors. Analysis of AT1R expression with radiolabelled ligand binding assays in human breast cancer biopsies showed high AT1R levels in 30% of invasive ductal carcinomas analysed. Furthermore, analysis of the TCGA database identified that high AT1R expression to be associated with luminal breast cancer subtype. Our in vivo data and analysis of human invasive ductal carcinoma samples identify the AT1R is a potential therapeutic target in breast cancer, with the availability of a range of well-tolerated inhibitors currently used in clinics. We describe a novel signalling pathway critical in breast tumorigenesis, that may provide new therapeutic avenues to complement current treatments.


Experimental Physiology | 2014

Angiotensin type 1A receptor expression in C1 neurons of the rostral ventrolateral medulla contributes to the development of angiotensin‐dependent hypertension

Nikola Jancovski; David Carter; Angela A. Connelly; Elyse Stevens; Jaspreet K. Bassi; Clément Menuet; Andrew M. Allen

What is the central question of this study? This study addresses the mechanism by which deletion of angiotensin II type 1A receptors from catecholaminergic neurons reduces angiotensin‐dependent hypertension, as well as the identity of the cells involved. What is the main finding and its importance? Deletion of angiotensin II type 1A receptors from catecholaminergic neurons results in reduced sympathetic nerve activation and fluid and electrolyte retention during angiotensin infusion. The C1 neurons of the rostral ventrolateral medulla are involved in the later phase of the hypertension. We demonstrate that at least two different populations of catecholaminergic neurons are involved in the sympathetic nerve activation required for the full development of angiotensin‐dependent hypertension.


Cardiovascular Research | 2013

Cardiovascular role of angiotensin type1A receptors in the nucleus of the solitary tract of mice

Beza Abegaz; Pamela J. Davern; Kristy L. Jackson; Thu-Phuc Nguyen-Huu; Jaspreet K. Bassi; Angela A. Connelly; Yan-Ting Choong; Andrew M. Allen; G. Head

AIMS The nucleus of the solitary tract (NTS) is important for cardiovascular regulation and contains angiotensin type 1A (AT1A) receptors. To assess its function, we examined the effect of expressing in AT1A receptors in the NTS of mice lacking these receptors. METHODS AND RESULTS Bilateral microinjections of lentivirus expressing AT1A receptors (AT1Av mice, n = 6) or green fluorescent protein (GFPv, n = 8, control) under the control of the PRSx8 promotor were made into the NTS of AT1A receptors null mice (AT1A(-/-)). Telemetry devices recorded blood pressure (BP), heart rate (HR), and locomotor activity. Expression of AT1A receptors in the NTS increased BP by 11.2 ± 4 mmHg (P < 0.05) at 2 and 3 weeks, whereas GFPv mice remained at pre-injection BP. Ganglion blockade reduced BP to similar levels pre- and post-transfection in GFPv and AT1Av mice. Greater pressor responses to cage-switch stress were observed following AT1A receptors expression (+18 ± 2 mmHg pre- to +24 ± 2 mmHg post-virus, P < 0.05) with similar stress-induced pressor responses pre- and post-virus in GFPv mice. Pressor responses to restraint stress pre- and post-virus were similar in AT1Av but were 20% less post-GFPv (P < 0.001). The lack of attenuation in BP to restraint was associated with four-fold greater Fos-expression in AT1A receptors mice. AT1A receptors expression in the NTS did not alter baroreflex gain differently between groups. CONCLUSION The results suggest that transfection of AT1A receptors on neurons in the NTS elevates BP independent of the SNS and pressor responses to aversive stimuli are associated with greater Fos-expression in forebrain regions. This study suggests a novel mechanism by which the NTS may modulate MAP in the long-term via AT1A receptors.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse

David Carter; Yan-Ting Choong; Angela A. Connelly; Jaspreet K. Bassi; Nicole O Hunter; Nattaya Thongsepee; Ida J. Llewellyn-Smith; Angelina Y. Fong; Stuart J. McDougall; Andrew M. Allen

Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT1AR) most widely expressed in adult neurons. Activation of the AT1R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT1R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT1AR-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT1AR promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT1AR-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT1AR-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT1AR-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT1AR-GFP neurons and TH-GFP neurons showed similar AT1AR-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT1AR-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Viscerosensory input drives angiotensin II type 1A receptor-expressing neurons in the solitary tract nucleus

David Carter; Haoyao Guo; Angela A. Connelly; Jaspreet K. Bassi; Angelina Y. Fong; Andrew M. Allen; Stuart J. McDougall

Homeostatic regulation of visceral organ function requires integrated processing of neural and neurohormonal sensory signals. The nucleus of the solitary tract (NTS) is the primary sensory nucleus for cranial visceral sensory afferents. Angiotensin II (ANG II) is known to modulate peripheral visceral reflexes, in part, by activating ANG II type 1A receptors (AT1AR) in the NTS. AT1AR-expressing NTS neurons occur throughout the NTS with a defined subnuclear distribution, and most of these neurons are depolarized by ANG II. In this study we determined whether AT1AR-expressing NTS neurons receive direct visceral sensory input, and whether this input is modulated by ANG II. Using AT1AR-GFP mice to make targeted whole cell recordings from AT1AR-expressing NTS neurons, we demonstrate that two-thirds (37 of 56) of AT1AR-expressing neurons receive direct excitatory, visceral sensory input. In half of the neurons tested (4 of 8) the excitatory visceral sensory input was significantly reduced by application of the transient receptor potential vallinoid type 1 receptor agonist, capsaicin, indicating AT1AR-expressing neurons can receive either C- or A-fiber-mediated input. Application of ANG II to a subset of second-order AT1AR-expressing neurons did not affect spontaneous, evoked, or asynchronous glutamate release from visceral sensory afferents. Thus it is unlikely that AT1AR-expressing viscerosensory neurons terminate on AT1AR-expressing NTS neurons. Our data suggest that ANG II is likely to modulate multiple visceral sensory modalities by altering the excitability of second-order AT1AR-expressing NTS neurons.

Collaboration


Dive into the Angela A. Connelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Carter

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart J. McDougall

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge