Angela Fiore
University of Salento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela Fiore.
Nano Letters | 2010
Dmitry Baranov; Angela Fiore; Marijn A. van Huis; Cinzia Giannini; Andrea Falqui; Ugo Lafont; H.W. Zandbergen; Marco Zanella; Roberto Cingolani; Liberato Manna
Arranging anisotropic nanoparticles into ordered assemblies remains a challenging quest requiring innovative and ingenuous approaches. The variety of interactions present in colloidal solutions of nonspherical inorganic nanocrystals can be exploited for this purpose. By tuning depletion attraction forces between hydrophobic colloidal nanorods of semiconductors, dispersed in an organic solvent, these could be assembled into 2D monolayers of close-packed hexagonally ordered arrays directly in solution. Once formed, these layers could be fished onto a substrate, and sheets of vertically standing rods were fabricated, with no additional external bias applied. Alternatively, the assemblies could be isolated and redispersed in polar solvents, yielding suspensions of micrometer-sized sheets which could be chemically treated directly in solution. Depletion attraction forces were also effective in the shape-selective separation of nanorods from binary mixtures of rods and spheres. The reported procedures have the potential to enable powerful and cost-effective fabrication approaches to materials and devices based on self-organized anisotropic nanoparticles.
Journal of the American Chemical Society | 2009
Angela Fiore; Rosanna Mastria; Maria Grazia Lupo; Guglielmo Lanzani; Cinzia Giannini; Elvio Carlino; Giovanni Morello; Milena De Giorgi; Yanqin Li; Roberto Cingolani; Liberato Manna
We report a general synthetic approach to tetrapod-shaped colloidal nanocrystals made of various combinations of II-VI semiconductors. Uniform tetrapods were prepared using preformed seeds in the sphalerite structure, onto which arms were grown by coinjection of the seeds and chemical precursors into a hot mixture of surfactants. By this approach, a wide variety of core materials could be chosen (in practice, most of the II-VI semiconductors that could be prepared in the sphalerite phase, namely, CdSe, ZnTe, CdTe); in contrast, the best materials for arm growth were CdS and CdTe. The samples were extensively characterized with the aid of several techniques.
Journal of the American Chemical Society | 2008
Albert Figuerola; Angela Fiore; Riccardo Di Corato; Andrea Falqui; Cinzia Giannini; E. Micotti; Alessandro Lascialfari; M. Corti; Roberto Cingolani; Teresa Pellegrino; Pantaleo Davide Cozzoli; Liberato Manna
A one-pot, two-step colloidal strategy to prepare bimagnetic hybrid nanocrystals (HNCs), comprising size-tuned fcc FePt and inverse spinel cubic iron oxide domains epitaxially arranged in a heterodimer configuration, is described. The HNCs have been synthesized in a unique surfactant environment by temperature-driven sequential reactions, involving the homogeneous nucleation of FePt seeds and the subsequent heterogeneous growth of iron oxide. This self-regulated mechanism offers high versatility in the control of the geometric features of the resulting heterostructures, circumventing the use of more elaborate seeded growth techniques. It has been found that, as a consequence of the exchange coupling between the two materials, the HNCs exhibit tunable single-phase-like magnetic behavior, distinct from that of their individual components. In addition, the potential of the heterodimers as effective contrast agents for magnetic resonance imaging techniques has been examined.
Nano Letters | 2008
Maria Grazia Lupo; Della Sala F; M. Zavelani-Rossi; Angela Fiore; Larry Lüer; Dario Polli; R. Cingolani; Liberato Manna; Guglielmo Lanzani
Colloidal semiconductor nanocrystals are nanoscale materials whose optical, electronic and transport properties, due to their strong dependence on size and shape, can be finely tuned by advanced chemical synthesis approaches. Among various types of semiconductor nanocrystals, core-shell nanostructures comprised of a semiconductor core that is covered by a thin shell of another type of semiconductor material have been extensively investigated.
Advanced Materials | 2009
Albert Figuerola; Isabella R. Franchini; Angela Fiore; Rosanna Mastria; Andrea Falqui; Giovanni Bertoni; Sara Bals; Gustaaf Van Tendeloo; Stefan Kudera; R. Cingolani; Liberato Manna
[*] Dr. A. Figuerola, I. R. Franchini, A. Fiore, Dr. S. Kudera, Prof. R. Cingolani, Dr. L. Manna National Nanotechnology Laboratory of CNR-INFM, Unita di Ricerca IIT Distretto Tecnologico ISUFI, via per Arnesano km 5, I-73100 Lecce (Italy) Fax: (þ39) 0832298237 E-mail: [email protected] Dr. A. Figuerola, A. Fiore, R. Mastria, Prof. R. Cingolani Scuola Superiore ISUFI; University of Salento Distretto Tecnologico ISUFI, via per Arnesano km 5, I-73100 Lecce (Italy)
ACS Nano | 2009
Aurora Rizzo; Concetta Nobile; Marco Mazzeo; Milena De Giorgi; Angela Fiore; Roberto Cingolani; Liberato Manna; Giuseppe Gigli
We demonstrate a straightforward strategy to fabricate a multilayer inorganic/organic polarized light-emitting diode device based on highly ordered arrays of rod-shaped nanocrystals as the active species. We have developed a simple and effective method that allows colloidal CdSe/CdS core/shell nanorods to be laterally aligned in smectic or nematic phases on the surface of water. A floating film of such ordered nanorods has been collected by a poly(dimethylsiloxane) (PDMS) stamp pad and transferred by contact printing onto previously evaporated organic layers. Thanks to the lateral nanorod alignment the as-prepared film exhibited strong polarized photoluminescence and it has been used as emissive layer in the polarized electroluminescent device.
Applied Physics Letters | 2010
Ferruccio Pisanello; Luigi Martiradonna; Godefroy Leménager; Piernicola Spinicelli; Angela Fiore; Liberato Manna; Jean-Pierre Hermier; Roberto Cingolani; E. Giacobino; Massimo De Vittorio; Alberto Bramati
We propose colloidal CdSe/CdS dots in rods as nonclassical sources for quantum information technology. Such nanoemitters show specific properties such as strongly polarized emission of on-demand single photons at room temperature, dipolelike behavior and mono-exponential recombination rates, making us envision their suitability as sources of single photons with well defined quantum states in quantum cryptography based devices.
ACS Nano | 2010
Anna Persano; Milena De Giorgi; Angela Fiore; Roberto Cingolani; Liberato Manna; Adriano Cola; Roman Krahne
We report on photoconduction and optical properties of aligned assemblies of core-shell CdSe/CdS nanorods prepared by a seeded growth approach. We fabricate oriented layers of nanorods by drop casting the nanorods from a solution on substrates with prepatterned, micrometer-spaced electrodes and obtain nanorod alignment due to the coffee stain effect. The photoconductivity of the nanorod layers can be improved significantly by an annealing process under vacuum conditions. The spectral response of the photocurrent shows distinct features that can be assigned to the electronic level structure of the core-shell nanorods and that relate well to the spectra obtained by absorption measurements. We study assemblies of nanorods oriented parallel and perpendicular to the applied electric field by the combined use of photocurrent and photoluminescence spectroscopy. We obtain consistent results which show that charge carrier separation and transport are more efficient for nanorods oriented parallel to the electric field. We also investigate the light polarization sensitivity of the photocurrent for the oriented nanorod layers and observe higher conductivity in the case of perpendicular polarization with respect to the long axis of the nanorods.
Beilstein Journal of Nanotechnology | 2010
Jana Bomm; Andreas Büchtemann; Angela Fiore; Liberato Manna; James H Nelson; Diana Hill; Wilfried van Sark
Summary Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt %) and at a UV-initiator concentration of 0.1 wt % for poly(lauryl methacrylate). Nanorods tend to agglomerate in cellulose triacetate.
Journal of Physics: Condensed Matter | 2009
Concetta Nobile; Angela Fiore; Roberto Cingolani; Liberato Manna; Roman Krahne
We deposit droplets of nanorods dispersed in solvents on substrate surfaces and let the solvent evaporate. We find that strong contact line pinning leads to dense nanorod deposition inside coffee stain fringes, where we observe large scale lateral ordering of the nanorods with the long axis of the rods oriented parallel to the contact line. We observe birefringence of these coffee stain fringes by polarized microscopy and we find the direction of the extraordinary refractive index parallel to the long axis of the nanorods.