Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela H. DePace is active.

Publication


Featured researches published by Angela H. DePace.


Cell | 1998

A CRITICAL ROLE FOR AMINO-TERMINAL GLUTAMINE/ASPARAGINE REPEATS IN THE FORMATION AND PROPAGATION OF A YEAST PRION

Angela H. DePace; Alex Santoso; Paul Hillner; Jonathan S. Weissman

The yeast [PSI+] factor propagates by a prion-like mechanism involving self-replicating Sup35p amyloids. We identified multiple Sup35p mutants that either are poorly recruited into, or cause curing of, wildtype amyloids in vivo. In vitro, these mutants showed markedly decreased rates of amyloid formation, strongly supporting the protein-only prion hypothesis. Kinetic analysis suggests that the prion state replicates by accelerating slow conformational changes rather than by providing stable nuclei. Strikingly, our mutations map exclusively within a short glutamine/asparagine-rich region of Sup35p, and all but one occur at polar residues. Even after replacement of this region with polyglutamine, Sup35p retains its ability to form amyloids. These and other considerations suggest similarities between the prion-like propagation of [PSI+] and polyglutamine-mediated pathogenesis of several neurodegenerative diseases.


Genome Biology | 2006

Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline

Cris L. Luengo Hendriks; Soile V.E. Keranen; Charless C. Fowlkes; Lisa Simirenko; Gunther H. Weber; Angela H. DePace; Clara Henriquez; David W. Kaszuba; Bernd Hamann; Michael B. Eisen; Jitendra Malik; Damir Sudar; Mark D. Biggin; David W. Knowles

BackgroundTo model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution.ResultsHere we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that our methods are sufficiently accurate to detect previously undescribed features of morphology and gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear density patterns and apical/basal displacements that correlate with later well-known morphological features. Pair rule gene expression stripes, generally considered to specify patterning only along the anterior/posterior body axis, are shown to have complex changes in stripe location, stripe curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not always maintain the same register to each other.ConclusionThe application of these quantitative methods to other developmental systems will likely reveal many other previously unknown features and provide a more rigorous understanding of developmental regulatory networks.


Genetics | 2013

Depleting Gene Activities in Early Drosophila Embryos with the “Maternal-Gal4–shRNA” System

Max V. Staller; Dong Yan; Sakara Randklev; Meghan D.J. Bragdon; Zeba Wunderlich; Rong Tao; Lizabeth A. Perkins; Angela H. DePace; Norbert Perrimon

In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal–zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.


PLOS Genetics | 2011

A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

Charless C. Fowlkes; Kelly B. Eckenrode; Meghan D.J. Bragdon; Miriah D. Meyer; Zeba Wunderlich; Lisa Simirenko; Cris L. Luengo Hendriks; Soile V.E. Keranen; Clara Henriquez; David W. Knowles; Mark D. Biggin; Michael B. Eisen; Angela H. DePace

Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo

Max V. Staller; Ben J. Vincent; Meghan D.J. Bragdon; Tara Lydiard-Martin; Zeba Wunderlich; Javier Estrada; Angela H. DePace

Significance Enhancers are regions of regulatory DNA that control gene expression and cell fate decisions during development. Enhancers compute the expression pattern of their target gene by reading the concentrations of input regulatory proteins. Many developmental genes contain multiple enhancers that control the same output pattern, but it is unclear whether these enhancers all compute the pattern in the same way. We use measurements in single cells and computational models in Drosophila embryos to demonstrate that two enhancers that encode the same gene expression pattern compute differently: the same regulatory protein represses one enhancer and activates the other. Pairs of enhancers that generate the same pattern by performing different computations may impart special properties to developmental systems. Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA—it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two “shadow enhancers” use different regulatory logic to create the same pattern.


Molecular Systems Biology | 2012

Dissecting sources of quantitative gene expression pattern divergence between Drosophila species

Zeba Wunderlich; Meghan D.J. Bragdon; Kelly B. Eckenrode; Tara Lydiard-Martin; Sivanne Pearl-Waserman; Angela H. DePace

Gene expression patterns can diverge between species due to changes in a genes regulatory DNA or changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a modeling framework to uncover the sources of expression differences in blastoderm embryos of three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback (hb) posterior stripe. Using this framework and cellular‐resolution expression measurements of hb and its regulating TFs, we found that changes in the expression patterns of hbs TFs account for much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster lines, which demonstrate that this set of orthologous cis‐regulatory elements (CREs) direct similar, but not identical, expression patterns. We related expression pattern differences to sequence changes in the CRE using a calculation of the CREs TF binding site content. By applying this calculation in both the transgenic and endogenous contexts, we found that changes in binding site content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit components other than the CRE.


Development | 2015

A gene expression atlas of a bicoid -depleted Drosophila embryo reveals early canalization of cell fate

Max V. Staller; Charless C. Fowlkes; Meghan D.J. Bragdon; Zeba Wunderlich; Javier Estrada; Angela H. DePace

In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network. Summary: Drosophila bicoid mutant embryos show severe patterning phenotypes, but individual cells retain wild-type fates - as judged by expression of key patterning genes at single-cell resolution.


Methods | 2014

Comparing mRNA levels using in situ hybridization of a target gene and co-stain

Zeba Wunderlich; Meghan D.J. Bragdon; Angela H. DePace

In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels.


Nature Structural & Molecular Biology | 2002

Origins and kinetic consequences of diversity in Sup35 yeast prion fibers.

Angela H. DePace; Jonathan S. Weissman

A remarkable feature of prions is that infectious particles composed of the same prion protein can give rise to different phenotypes. This strain phenomenon suggests that a single prion protein can adopt multiple infectious conformations. Here we use a novel single fiber growth assay to examine the heterogeneity of amyloid fibers formed by the yeast Sup35 prion protein. Sup35 spontaneously forms multiple, distinct and faithfully propagating fiber types, which differ dramatically both in their degrees of polarity and overall growth rates. Both in terms of the number of distinct self-propagating fiber types, as well as the ability of these differences to dictate the rate of prion growth, this diversity is well suited to account for the range of prion strain phenotypes observed in vivo.


Nature | 2003

Generation of prion transmission barriers by mutational control of amyloid conformations.

Peter Chien; Angela H. DePace; Sean R. Collins; Jonathan S. Weissman

Self-propagating β-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms — a process that is thought to underlie prion strain variation. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins. In prions, this specificity leads to barriers that limit transmission between species. Using the yeast prion [PSI+], we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of ‘infectious’ conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.

Collaboration


Dive into the Angela H. DePace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Knowles

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark D. Biggin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Soile V.E. Keranen

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge