Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela J. Marlow is active.

Publication


Featured researches published by Angela J. Marlow.


American Journal of Human Genetics | 2001

A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p

Sarah Palferman; Nicola Matthews; Martha Turner; Janette Moore; Amaia Hervas; Anne Aubin; Simon Wallace; Janine Michelotti; Catherine Wainhouse; Alina Paul; Elaine Thompson; Ramyani Gupta; Claire Garner; Marianne Murin; Christine M. Freitag; N Ryder; E Cottington; Jeremy R. Parr; Andrew Pickles; Michael Rutter; Anthony J. Bailey; Gabrielle Barnby; J A Lamb; Angela J. Marlow; Pat Scudder; Anthony P. Monaco; Gillian Baird; Antony Cox; Zoe Docherty; Pamela Warburton

Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.


American Journal of Human Genetics | 2002

A Genomewide Scan for Loci Involved in Attention-Deficit/Hyperactivity Disorder

Simon E. Fisher; Clyde Francks; James T. McCracken; James J. McGough; Angela J. Marlow; I. Laurence MacPhie; Dianne F. Newbury; Lori Crawford; Christina G.S. Palmer; J. Arthur Woodward; Melissa Del’Homme; Dennis P. Cantwell; Stanley F. Nelson; Anthony P. Monaco; Susan L. Smalley

Attention deficit/hyperactivity disorder (ADHD) is a common heritable disorder with a childhood onset. Molecular genetic studies of ADHD have previously focused on examining the roles of specific candidate genes, primarily those involved in dopaminergic pathways. We have performed the first systematic genomewide linkage scan for loci influencing ADHD in 126 affected sib pairs, using a approximately 10-cM grid of microsatellite markers. Allele-sharing linkage methods enabled us to exclude any loci with a lambda(s) of > or =3 from 96% of the genome and those with a lambda(s) of > or =2.5 from 91%, indicating that there is unlikely to be a major gene involved in ADHD susceptibility in our sample. Under a strict diagnostic scheme we could exclude all screened regions of the X chromosome for a locus-specific lambda(s) of >/=2 in brother-brother pairs, demonstrating that the excess of affected males with ADHD is probably not attributable to a major X-linked effect. Qualitative trait maximum LOD score analyses pointed to a number of chromosomal sites that may contain genetic risk factors of moderate effect. None exceeded genomewide significance thresholds, but LOD scores were >1.5 for regions on 5p12, 10q26, 12q23, and 16p13. Quantitative-trait analysis of ADHD symptom counts implicated a region on 12p13 (maximum LOD 2.6) that also yielded a LOD >1 when qualitative methods were used. A survey of regions containing 36 genes that have been proposed as candidates for ADHD indicated that 29 of these genes, including DRD4 and DAT1, could be excluded for a lambda(s) of 2. Only three of the candidates-DRD5, 5HTT, and CALCYON-coincided with sites of positive linkage identified by our screen. Two of the regions highlighted in the present study, 2q24 and 16p13, coincided with the top linkage peaks reported by a recent genome-scan study of autistic sib pairs.


American Journal of Human Genetics | 1999

A Quantitative-Trait Locus on Chromosome 6p Influences Different Aspects of Developmental Dyslexia

Simon E. Fisher; Angela J. Marlow; J A Lamb; Elena Maestrini; Dianne F. Williams; Alex J. Richardson; Daniel E. Weeks; John Stein; Anthony P. Monaco

Recent application of nonparametric-linkage analysis to reading disability has implicated a putative quantitative-trait locus (QTL) on the short arm of chromosome 6. In the present study, we use QTL methods to evaluate linkage to the 6p25-21.3 region in a sample of 181 sib pairs from 82 nuclear families that were selected on the basis of a dyslexic proband. We have assessed linkage directly for several quantitative measures that should correlate with different components of the phenotype, rather than using a single composite measure or employing categorical definitions of subtypes. Our measures include the traditional IQ/reading discrepancy score, as well as tests of word recognition, irregular-word reading, and nonword reading. Pointwise analysis by means of sib-pair trait differences suggests the presence, in 6p21.3, of a QTL influencing multiple components of dyslexia, in particular the reading of irregular words (P=.0016) and nonwords (P=.0024). A complementary statistical approach involving estimation of variance components supports these findings (irregular words, P=.007; nonwords, P=.0004). Multipoint analyses place the QTL within the D6S422-D6S291 interval, with a peak around markers D6S276 and D6S105 consistently identified by approaches based on trait differences (irregular words, P=.00035; nonwords, P=.0035) and variance components (irregular words, P=.007; nonwords, P=.0038). Our findings indicate that the QTL affects both phonological and orthographic skills and is not specific to phoneme awareness, as has been previously suggested. Further studies will be necessary to obtain a more precise localization of this QTL, which may lead to the isolation of one of the genes involved in developmental dyslexia.


American Journal of Human Genetics | 2002

A genomewide scan identifies two novel loci involved in specific language impairment

Dianne F. Newbury; J. D. Cleak; Yumiko Ishikawa-Brush; Angela J. Marlow; Simon E. Fisher; Anthony P. Monaco; Carol Stott; M. J. Merricks; Ian M. Goodyer; Patrick Bolton; L. Jannoun; Vicky Slonims; Gillian Baird; Andrew Pickles; Dorothy V. M. Bishop; Gina Conti-Ramsden; Peter J. Helms

Approximately 4% of English-speaking children are affected by specific language impairment (SLI), a disorder in the development of language skills despite adequate opportunity and normal intelligence. Several studies have indicated the importance of genetic factors in SLI; a positive family history confers an increased risk of development, and concordance in monozygotic twins consistently exceeds that in dizygotic twins. However, like many behavioral traits, SLI is assumed to be genetically complex, with several loci contributing to the overall risk. We have compiled 98 families drawn from epidemiological and clinical populations, all with probands whose standard language scores fall > or =1.5 SD below the mean for their age. Systematic genomewide quantitative-trait-locus analysis of three language-related measures (i.e., the Clinical Evaluation of Language Fundamentals-Revised [CELF-R] receptive and expressive scales and the nonword repetition [NWR] test) yielded two regions, one on chromosome 16 and one on 19, that both had maximum LOD scores of 3.55. Simulations suggest that, of these two multipoint results, the NWR linkage to chromosome 16q is the most significant, with empirical P values reaching 10(-5), under both Haseman-Elston (HE) analysis (LOD score 3.55; P=.00003) and variance-components (VC) analysis (LOD score 2.57; P=.00008). Single-point analyses provided further support for involvement of this locus, with three markers, under the peak of linkage, yielding LOD scores >1.9. The 19q locus was linked to the CELF-R expressive-language score and exceeds the threshold for suggestive linkage under all types of analysis performed-multipoint HE analysis (LOD score 3.55; empirical P=.00004) and VC (LOD score 2.84; empirical P=.00027) and single-point HE analysis (LOD score 2.49) and VC (LOD score 2.22). Furthermore, both the clinical and epidemiological samples showed independent evidence of linkage on both chromosome 16q and chromosome 19q, indicating that these may represent universally important loci in SLI and, thus, general risk factors for language impairment.


Nature Genetics | 2002

Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia

Simon E. Fisher; Clyde Francks; Angela J. Marlow; I. Laurence MacPhie; Dianne F. Newbury; Lon R. Cardon; Yumiko Ishikawa-Brush; Alex J. Richardson; Joel B. Talcott; Javier Gayán; Richard K. Olson; Bruce F. Pennington; Shelley D. Smith; John C. DeFries; John F. Stein; Anthony P. Monaco

Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P≤0.0004 for single word–reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait.


American Journal of Human Genetics | 2004

A 77-Kilobase Region of Chromosome 6p22.2 Is Associated with Dyslexia in Families From the United Kingdom and From the United States

Clyde Francks; Silvia Paracchini; Shelley D. Smith; Alex J. Richardson; Thomas S. Scerri; Lon R. Cardon; Angela J. Marlow; I. Laurence MacPhie; Janet Walter; Bruce F. Pennington; Simon E. Fisher; Richard K. Olson; John C. DeFries; John F. Stein; Anthony P. Monaco

Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of approximately 12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability.


American Journal of Medical Genetics | 1999

Serotonin transporter (5‐HTT) and γ‐aminobutyric acid receptor subunit β3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families

Elena Maestrini; Cecilia Lai; Angela J. Marlow; Nicola Matthews; Simon Wallace; Anthony J. Bailey; Edwin H. Cook; Daniel E. Weeks; Anthony P. Monaco

Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on the collection of families from the International Molecular Genetic Study of Autism (IMGSA) Consortium, using the transmission disequilibrium test. Two polymorphisms in the 5-HTT gene (a functional insertion-deletion polymorphism in the promoter and a variable number tandem repeat in the second intron) were examined in 90 families comprising 174 affected individuals. Furthermore, seven microsatellite markers spanning the 15q11-q13 region were studied in 94 families with 182 affected individuals. No significant evidence of association or linkage was found at any of the markers tested, indicating that the 5-HTT and the GABRB3 genes are unlikely to play a major role in the aetiology of autism in our family data set.


American Journal of Human Genetics | 2003

Use of multivariate linkage analysis for dissection of a complex cognitive trait.

Angela J. Marlow; Simon E. Fisher; Clyde Francks; I. Laurence MacPhie; Stacey S. Cherny; Alex J. Richardson; Joel B. Talcott; John F. Stein; Anthony P. Monaco; Lon R. Cardon

Replication of linkage results for complex traits has been exceedingly difficult, owing in part to the inability to measure the precise underlying phenotype, small sample sizes, genetic heterogeneity, and statistical methods employed in analysis. Often, in any particular study, multiple correlated traits have been collected, yet these have been analyzed independently or, at most, in bivariate analyses. Theoretical arguments suggest that full multivariate analysis of all available traits should offer more power to detect linkage; however, this has not yet been evaluated on a genomewide scale. Here, we conduct multivariate genomewide analyses of quantitative-trait loci that influence reading- and language-related measures in families affected with developmental dyslexia. The results of these analyses are substantially clearer than those of previous univariate analyses of the same data set, helping to resolve a number of key issues. These outcomes highlight the relevance of multivariate analysis for complex disorders for dissection of linkage results in correlated traits. The approach employed here may aid positional cloning of susceptibility genes in a wide spectrum of complex traits.


American Journal of Human Genetics | 2002

A Genomewide Linkage Screen for Relative Hand Skill in Sibling Pairs

Clyde Francks; Simon E. Fisher; I. Laurence MacPhie; Alex J. Richardson; Angela J. Marlow; John F. Stein; Anthony P. Monaco

Genomewide quantitative-trait locus (QTL) linkage analysis was performed using a continuous measure of relative hand skill (PegQ) in a sample of 195 reading-disabled sibling pairs from the United Kingdom. This was the first genomewide screen for any measure related to handedness. The mean PegQ in the sample was equivalent to that of normative data, and PegQ was not correlated with tests of reading ability (correlations between minus sign0.13 and 0.05). Relative hand skill could therefore be considered normal within the sample. A QTL on chromosome 2p11.2-12 yielded strong evidence for linkage to PegQ (empirical P=.00007), and another suggestive QTL on 17p11-q23 was also identified (empirical P=.002). The 2p11.2-12 locus was further analyzed in an independent sample of 143 reading-disabled sibling pairs, and this analysis yielded an empirical P=.13. Relative hand skill therefore is probably a complex multifactorial phenotype with a heterogeneous background, but nevertheless is amenable to QTL-based gene-mapping approaches.


Behavior Genetics | 2001

Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK

Angela J. Marlow; Simon E. Fisher; Alex J. Richardson; Clyde Francks; Joel B. Talcott; Anthony P. Monaco; John F. Stein; Lon R. Cardon

We describe a family-based sample of individuals with reading disability collected as part of a quantitative trait loci (QTL) mapping study. Eighty-nine nuclear families (135 independent sib-pairs) were identified through a single proband using a traditional discrepancy score of predicted/actual reading ability and a known family history. Eight correlated psychometric measures were administered to each sibling, including single word reading, spelling, similarities, matrices, spoonerisms, nonword and irregular word reading, and a pseudohomophone test. Summary statistics for each measure showed a reduced mean for the probands compared to the co-sibs, which in turn was lower than that of the population. This partial co-sib regression back to the mean indicates that the measures are influenced by familial factors and therefore, may be suitable for a mapping study. The variance of each of the measures remained largely unaffected, which is reassuring for the application of a QTL approach. Multivariate genetic analysis carried out to explore the relationship between the measures identified a common factor between the reading measures that accounted for 54% of the variance. Finally the familiality estimates (range 0.32–0.73) obtained for the reading measures including the common factor (0.68) supported their heritability. These findings demonstrate the viability of this sample for QTL mapping, and will assist in the interpretation of any subsequent linkage findings in an ongoing genome scan.

Collaboration


Dive into the Angela J. Marlow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Laurence MacPhie

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Maestrini

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Gillian Baird

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

J A Lamb

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge