Angela J. Westover
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela J. Westover.
Asaio Journal | 2006
William H. Fissell; Sargum Manley; Angela J. Westover; H. David Humes; Aaron J. Fleischman; Shuvo Roy
Over 300,000 Americans are dependent on hemodialysis as treatment for renal failure, and kidney transplantation is limited by scarcity of donor organs. This shortage has prompted research into tissue engineering of renal replacement therapy. Existing bioartificial kidneys are large and their use labor intensive, but they have shown improved survival compared to conventional therapy in preclinical studies and an US Food and Drug Administration–approved phase 2 clinical trial. This hybrid technology will require miniaturization of hemofilters, cell culture substrates, sensors, and integration of control electronics. Using the same harvesting and isolation techniques used in preparing bioartificial kidneys for clinical use, we characterized human renal tubule cell growth on a variety of silicon and related thin-film material substrates commonly used in the construction of microelectromechanical systems (MEMS), as well as novel silicon nanopore membranes (SNMs). Human cortical tubular epithelial cells (HCTC) were seeded onto samples of single-crystal silicon, polycrystalline silicon, silicon dioxide, silicon nitride, SU-8 photoresist, SNMs, and polyester tissue culture inserts, and grown to confluence. The cells formed confluent monolayers with tight junctions and central cilia. Transepithelial resistances were similar between SNMs and polyester membranes. The differentiated growth of human tubular epithelial cells on MEMS materials strongly suggests that miniaturization of the existing bioartificial kidney will be feasible, paving the way for widespread application of this novel technology.
Blood Purification | 2002
William H. Fissell; D. Brad Dyke; William F. Weitzel; Deborah A. Buffington; Angela J. Westover; Sherrill M. MacKay; Jorge M. Gutierrez; H. David Humes
The mortality from sepsis complicated by renal failure remains extremely high despite the application of modern renal replacement therapy. This study investigated whether treatment with a bioartificial kidney consisting of a hemofilter in a continuous venovenous hemofiltration circuit (CVVH) with a cartridge containing renal proximal tubule cells, also called the Renal Tubule Assist Device (RAD), would alter the course of sepsis in an animal model. The RAD has been previously characterized in vitro and ex vivo and provides transport, metabolic and endocrine activity. Mongrel dogs (n = 10) underwent surgical nephrectomy and 48 h later were treated with CVVH and either a RAD containing cells (n = 5) or an identically prepared sham cartridge (n = 5). After 4 h of therapy, intravenous endotoxin 2 mg/kg was infused over 1 h to simulate gram-negative septic shock. Data on blood pressure, cardiac output and systemic markers of inflammation were collected. Mean peak levels of an anti- inflammatory cytokine, IL-10, were significantly higher in cell-treated animals (15.25 vs. 6.29 ng/ml; p = 0.037), and mean arterial pressures were higher in cell-treated versus sham-treated animals (p < 0.04). We have demonstrated that treatment of an animal model of endotoxin shock and renal failure with a bioartificial kidney has measurable effects on circulating mediators of inflammation and on hemodynamic stability of the challenged animal.
Stem Cells | 2005
Mark Szczypka; Angela J. Westover; Shawn G. Clouthier; James L.M. Ferrara; H. David Humes
Results obtained in recent experiments suggest that bone marrow‐derived cells (BMDCs) engraft into tissues and differentiate into various somatic cell types. However, it is unclear whether injury is required for the phenomenon to occur at appreciable frequencies. In this study we tested whether BMDCs engraft into kidneys and differentiate into renal cells in the absence or presence of toxic injury. Renal damage was induced by delivery of folic acid (FA) to bone marrow (BM)‐recipient mice 1 or 9 months after bone marrow transplant, and kidneys were examined for donor‐derived cells 2,4, or 8 weeks after injury. Donor‐derived cells were abundant in the renal interstitium of injured kidneys and were detected in glomeruli of vehicle‐ and FA‐treated mice. Most of these cells expressed the common leukocyte antigen CD45 and display morphological characteristics of white blood cells. No donor‐derived renal tubule cells (RTCs) were detected in kidney sections of BM‐recipient mice. However, in cell culture, a cluster of seven donor‐derived cells of 4 × 106 RTCs examined (∼ 0.0002%) displayed morphological characteristics of RTCs. CD45+ cells of donor origin were also detected in glomeruli and glomerular outgrowths. Nested polymerase chain reaction analysis for the male‐specific Sry gene in cultured RTCs and glomerular outgrowths confirmed the presence of donor‐derived cells. These results suggest that BMDCs may incorporate into glomeruli as specialized glomerular mesangial cells; however, BMDCs rarely contribute to the repair of renal tubules in uninjured or FA‐treated mouse kidneys.
Pediatric Nephrology | 2014
H. David Humes; Deborah A. Buffington; Angela J. Westover; Shuvo Roy; William H. Fissell
The rapid understanding of the cellular and molecular bases of organ function and disease processes will be translated in the next decade into new therapeutic approaches to a wide range of clinical disorders, including acute and chronic renal failure. Central to these new therapies are the developing technologies of cell therapy and tissue engineering, which are based on the ability to expand stem or progenitor cells in tissue culture to perform differentiated tasks and to introduce these cells into the patient either via extracorporeal circuits or as implantable constructs. Cell therapy devices are currently being developed to replace the filtrative, metabolic, and endocrinologic functions of the kidney lost in both acute and chronic renal failure. This review summarizes the current state of development of a wearable or implantable bioartificial kidney. These devices have the promise to be combined to produce a wearable or implantable bioartificial kidney for full renal replacement therapy that may significantly diminish morbidity and mortality in patients with acute or chronic kidney disease.
Cell medicine | 2012
Deborah A. Buffington; Christopher J. Pino; Lijun Chen; Angela J. Westover; Gretchen Hageman; H. David Humes
Renal cell therapy has shown clinical efficacy in the treatment of acute renal failure (ARF) and promise for treatment of end-stage renal disease (ESRD) by supplementing conventional small solute clearance (hemodialysis or hemofiltration) with endocrine and metabolic function provided by cells maintained in an extracorporeal circuit. A major obstacle in the widespread adoption of this therapeutic approach is the lack of a cryopreservable system to enable distribution, storage, and therapeutic use at point of care facilities. This report details the design, fabrication, and assessment of a Bioartificial Renal Epithelial Cell System (BRECS), the first all-in-one culture vessel, cryostorage device, and cell therapy delivery system. The BRECS was loaded with up to 20 cell-seeded porous disks, which were maintained by perfusion culture. Once cells reached over 5 × 106 cells/disk for a total therapeutic dose of approximately 108 cells, the BRECS was cryopreserved for storage at -80°C or -140°C. The BRECS was rapidly thawed, and perfusion culture was resumed. Near precryopreservation values of cell viability, metabolic activity, and differentiated phenotype of functional renal cells were confirmed post-reconstitution. This technology could be extended to administer other cell-based therapies where metabolic, regulatory, or secretion functions can be leveraged in an immunoisolated extracorporeal circuit.
PLOS ONE | 2011
Feng Ding; Joon Ho Song; Ju Young Jung; Liandi Lou; Min Wang; Linda Charles; Angela J. Westover; Peter L. Smith; Christopher J. Pino; Deborah A. Buffington; H. David Humes
Objective Septic shock has a clinical mortality rate approaching fifty percent. The major clinical manifestations of sepsis are due to the dysregulation of the hosts response to infection rather than the direct consequences of the invading pathogen. Central to this initial immunologic response is the activation of leukocytes and microvascular endothelium resulting in cardiovascular instability, lung injury and renal dysfunction. Due to the primary role of leukocyte activation in the sepsis syndrome, a synthetic biomimetic membrane, called a selective cytopheretic device (SCD), was developed to bind activated leukocytes. The incorporation of the SCD along an extracorporeal blood circuit coupled with regional anticoagulation with citrate to lower blood ionized calcium was devised to modulate leukocyte activation in sepsis. Design Laboratory investigation. Setting University of Michigan Medical School. Subjects Pigs weighing 30-35 kg. Interventions To assess the effect of the SCD in septic shock, pigs were administered 30×1010 bacteria/kg body weight of Escherichia coli into the peritoneal cavity and within 1 hr were immediately placed in an extracorporeal circuit containing SCD. Measurements and Main Results In this animal model, the SCD with citrate compared to control groups without the SCD or with heparin anticoagulation ameliorated the cardiovascular instability and lung sequestration of activated leukocytes, reduced renal dysfunction and improved survival time compared to various control groups. This effect was associated with minimal elevations of systemic circulating neutrophil activation. Conclusions These preclinical studies along with two favorable exploratory clinical trials form the basis of an FDA-approved investigational device exemption for a pivotal multicenter, randomized control trial currently underway.
Journal of Tissue Engineering and Regenerative Medicine | 2012
Angela J. Westover; Deborah A. Buffington; H. D. Humes
Renal cell therapy employing cells derived from adult renal epithelial cell (REC) progenitors promises to reduce the morbidity of patients with renal insufficiency due to acute renal failure and end stage renal disease. To this end, tissue engineered devices addressing the neglected biologic component of renal replacement therapy are being developed. Because human donor tissue is limited, novel enhanced progenitor cell propagation (EP) techniques have been developed and applied to adult human kidney transplant discards from six donors. Changes include more efficient digestion and the amplification of progenitors prior to terminal epithelial differentiation promoted by contact inhibition and the addition of retinoic acid. Differentiated morphology in EP populations was demonstrated by the ability to form polarized epithelium with tight junctions, apical central cilia and expression of brush border membrane enzymes. Evaluation of lipopolysaccharide stimulated interleukin‐8 secretion and γ–glutamyl transpeptisade activity in EP derived cells was used to confirm therapeutic equivalence to REC obtained using published techniques, which have previously shown efficacy in large animal models and clinical trials. Yield exceeded 1016 cells/gram cortex from the only kidney obtained due to an anatomical defect, while the average yield from diseased kidneys ranged from 1.1×109 to 8.8×1011 cells/gram cortex, representing an increase of more than 10 doublings over standard methods. Application of the EP protocol to REC expansion has solved the problem of cell sourcing as the limiting factor to the manufacture of cell based therapies targeting renal diseases and may provide a method for autologous device fabrication from core kidney biopsies. Copyright
Nephrology Dialysis Transplantation | 2013
Christopher J. Pino; Alexander S. Yevzlin; Kyungsoo Lee; Angela J. Westover; Peter L. Smith; Deborah A. Buffington; H. David Humes
Acute and chronic solid organ failures are costly disease processes with high mortality rates. Inflammation plays a central role in both acute and chronic organ failure, including heart, lung and kidney. In this regard, new therapies for these disorders have focused on inhibiting the mediators of inflammation, including cytokines and free radicals, with little or no success in clinical studies. Recent novel treatment strategies have been directed to cell-based rather than mediator-based approaches, designed to immunomodulate the deleterious effects of inflammation on organ function. One approach, cell therapy, replaces cells that were damaged in the acute or chronic disease process with stem/progenitor technology, to rebalance excessive inflammatory states. As an example of this approach, the use of an immunomodulatory role of renal epithelial progenitor cells to treat acute renal failure (ARF) and multiorgan failure arising from acute kidney injury is reviewed. A second therapeutic pathway, cell processing, does not incorporate stem/progenitor cells in the device, but rather biomimetic materials that remove and modulate the primary cellular components, which promote the worsening organ tissue injury associated with inflammation. The use of an immunomodulating leukocyte selective cytopheretic inhibitory device is also reviewed as an example of this cell processing approach. Both of these unconventional strategies have shown early clinical efficacy in pilot clinical trials and may transform the therapeutic approach to organ failure disorders.
Journal of Tissue Engineering and Regenerative Medicine | 2017
Angela J. Westover; Deborah A. Buffington; Kimberly A. Johnston; Peter L. Smith; Christopher J. Pino; H. David Humes
Renal cell therapy using the hollow fiber based renal assist device (RAD) improved survival time in an animal model of septic shock (SS) through the amelioration of cardiac and vascular dysfunction. Safety and ability of the RAD to improve clinical outcomes was demonstrated in a Phase II clinical trial, in which patients had high prevalence of sepsis. Even with these promising results, clinical delivery of cell therapy is hampered by manufacturing hurdles, including cell sourcing, large‐scale device manufacture, storage and delivery. To address these limitations, the bioartificial renal epithelial cell system (BRECS) was developed. The BRECS contains human renal tubule epithelial cells derived from adult progenitor cells using enhanced propagation techniques. Cells were seeded onto trabeculated disks of niobium‐coated carbon, held within cryopreservable, perfusable, injection‐moulded polycarbonate housing. The study objective was to evaluate the BRECS in a porcine model of SS to establish conservation of efficacy after necessary cell sourcing and design modifications; a pre‐clinical requirement to move back into clinical trials. SS was incited by peritoneal injection of E. coli simultaneous to insertion of BRECS (n=10) or control (n=15), into the ultrafiltrate biofeedback component of an extracorporeal circuit. Comparable to RAD, prolonged survival of the BRECS cohort was conveyed through stabilization of cardiac output and vascular leak. In conclusion, the demonstration of conserved efficacy with BRECS therapy in a porcine SS model represents a crucial step toward returning renal cell therapy to the clinical setting, initially targeting ICU patients with acute kidney injury requiring continuous renal replacement therapy. Copyright
Journal of Tissue Engineering and Regenerative Medicine | 2017
Kimberly A. Johnston; Angela J. Westover; Alvaro Rojas-Pena; Deborah A. Buffington; Christopher J. Pino; Peter L. Smith; H. David Humes
Cell therapy for the treatment of renal failure in the acute setting has proved successful, with therapeutic impact, yet development of a sustainable, portable bioartificial kidney for treatment of chronic renal failure has yet to be realized. Challenges in maintaining an anticoagulated blood circuit, the typical platform for solute clearance and support of the biological components, have posed a major hurdle in advancement of this technology. This group has developed a Bioartificial Renal Epithelial Cell System (BRECS) capable of differentiated renal cell function while sustained by body fluids other than blood. To evaluate this device for potential use in end‐stage renal disease, a large animal model was established that exploits peritoneal dialysis fluid for support of the biological device and delivery of cell therapy while providing uraemic control. Anephric sheep received a continuous flow peritoneal dialysis (CFPD) circuit that included a BRECS. Sheep were treated with BRECS containing 1 × 108 renal epithelial cells or acellular sham devices for up to 7 days. The BRECS cell viability and activity were maintained with extracorporeal peritoneal fluid circulation. A systemic immunological effect of BRECS therapy was observed as cell‐treated sheep retained neutrophil oxidative activity better than sham‐treated animals. This model demonstrates that use of the BRECS within a CFPD circuit embodies a feasible approach to a sustainable and effective wearable bioartificial kidney. Copyright