Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela K. Best is active.

Publication


Featured researches published by Angela K. Best.


Nature | 2012

Endothelial cell expression of haemoglobin α regulates nitric oxide signalling

Adam C. Straub; Alexander W. Lohman; Marie Billaud; Scott R. Johnstone; Scott Dwyer; Monica Y. Lee; Pamela D. Schoppee Bortz; Angela K. Best; Linda Columbus; Benjamin Gaston; Brant E. Isakson

Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) α (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb α and is abrogated by its genetic depletion. Mechanistically, endothelial Hb α haem iron in the Fe3+ state permits NO signalling, and this signalling is shut off when Hb α is reduced to the Fe2+ state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb α oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Compartmentalized Connexin 43 S-Nitrosylation/Denitrosylation Regulates Heterocellular Communication in the Vessel Wall

Adam C. Straub; Marie Billaud; Scott R. Johnstone; Angela K. Best; Sean Yemen; Scott Dwyer; Robin Looft-Wilson; Jeffery J. Lysiak; Ben Gaston; Lisa A. Palmer; Brant E. Isakson

Objective—To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. Methods and Results—Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been implicated in regulating heterocellular communication in the vessel wall. The myoendothelial junction serves as a conduit to facilitate gap junction communication between endothelial cells and vascular smooth muscle cells within the resistance vasculature. By using isolated vessels and a vascular cell coculture, we found that Cx43 is constitutively S-nitrosylated on cysteine 271 because of active endothelial NO synthase compartmentalized at the myoendothelial junction. Conversely, we found that stimulation of smooth muscle cells with the constrictor phenylephrine caused Cx43 to become denitrosylated because of compartmentalized S-nitrosoglutathione reductase, which attenuated channel permeability. We measured S-nitrosoglutathione breakdown and NOx concentrations at the myoendothelial junction and found S-nitrosoglutathione reductase activity to precede NO release. Conclusion—This study provides evidence for compartmentalized S-nitrosylation/denitrosylation in the regulation of smooth muscle cell to endothelial cell communication.


Circulation Research | 2011

Pannexin1 Regulates α1-Adrenergic Receptor– Mediated Vasoconstriction

Marie Billaud; Alexander W. Lohman; Adam C. Straub; Robin Looft-Wilson; Scott R. Johnstone; Christina A. Araj; Angela K. Best; Faraaz B. Chekeni; Kodi S. Ravichandran; Silvia Penuela; Dale W. Laird; Brant E. Isakson

Rationale: The coordination of vascular smooth muscle cell constriction plays an important role in vascular function, such as regulation of blood pressure; however, the mechanism responsible for vascular smooth muscle cell communication is not clear in the resistance vasculature. Pannexins (Panx) are purine-releasing channels permeable to the vasoconstrictor ATP and thus may play a role in the coordination of vascular smooth muscle cell constriction. Objective: We investigated the role of pannexins in phenylephrine- and KCl-mediated constriction of resistance arteries. Methods and Results: Western blot, immunohistochemistry, and immunogold labeling coupled to scanning and transmission electron microscopy revealed the presence of Panx1 but not Panx2 or Panx3 in thoracodorsal resistance arteries. Functionally, the contractile response of pressurized thoracodorsal resistance arteries to phenylephrine was decreased significantly by multiple Panx inhibitors (mefloquine, probenecid, and 10Panx1), ectonucleotidase (apyrase), and purinergic receptor inhibitors (suramin and reactive blue-2). Electroporation of thoracodorsal resistance arteries with either Panx1-green fluorescent protein or Panx1 small interfering RNA showed enhanced and decreased constriction, respectively, in response to phenylephrine. Lastly, the Panx inhibitors did not alter constriction in response to KCl. This result is consistent with coimmunoprecipitation experiments from thoracodorsal resistance arteries, which suggested an association between Panx1 and &agr;1D-adrenergic receptor. Conclusions: Our data demonstrate for the first time a key role for Panx1 in resistance arteries by contributing to the coordination of vascular smooth muscle cell constriction and possibly to the regulation of blood pressure.


Journal of Vascular Research | 2012

Expression of Pannexin Isoforms in the Systemic Murine Arterial Network

Alexander W. Lohman; Marie Billaud; Adam C. Straub; Scott R. Johnstone; Angela K. Best; Monica Lee; Kevin J. Barr; Silvia Penuela; Dale W. Laird; Brant E. Isakson

Aims: Pannexins (Panx) form ATP release channels and it has been proposed that they play an important role in the regulation of vascular tone. However, distribution of Panx across the arterial vasculature is not documented. Methods: We tested antibodies against Panx1, Panx2 and Panx3 on human embryonic kidney cells (which do not endogenously express Panx proteins) transfected with plasmids encoding each Panx isoform and Panx1–/– mice. Each of the Panx antibodies was found to be specific and was tested on isolated arteries using immunocytochemistry. Results: We demonstrated that Panx1 is the primary isoform detected in the arterial network. In large arteries, Panx1 is primarily in endothelial cells, whereas in small arteries and arterioles it localizes primarily to the smooth muscle cells. Panx1 was the predominant isoform expressed in coronary arteries, except in arteries less than 100 µm where Panx3 became detectable. Only Panx3 was expressed in the juxtaglomerular apparatus and cortical arterioles. The pulmonary artery and alveoli had expression of all 3 Panx isoforms. No Panx isoforms were detected at the myoendothelial junctions. Conclusion: We conclude that the specific localized expression of Panx channels throughout the vasculature points towards an important role for these channels in regulating the release of ATP throughout the arterial network.


Circulation Research | 2012

MAPK Phosphorylation of Connexin 43 Promotes Binding of Cyclin E and Smooth Muscle Cell Proliferation

Scott R. Johnstone; Brett M. Kroncke; Adam C. Straub; Angela K. Best; Clarence A. Dunn; Leslie A. Mitchell; Yelena Peskova; Robert K. Nakamoto; Michael Koval; Cecilia W. Lo; Paul D. Lampe; Linda Columbus; Brant E. Isakson

Rationale: Dedifferentiation of vascular smooth muscle cells (VSMC) leading to a proliferative cell phenotype significantly contributes to the development of atherosclerosis. Mitogen-activated protein kinase (MAPK) phosphorylation of proteins including connexin 43 (Cx43) has been associated with VSMC proliferation in atherosclerosis. Objective: To investigate whether MAPK phosphorylation of Cx43 is directly involved in VSMC proliferation. Methods and Results: We show in vivo that MAPK-phosphorylated Cx43 forms complexes with the cell cycle control proteins cyclin E and cyclin-dependent kinase 2 (CDK2) in carotids of apolipoprotein-E receptor null (ApoE−/−) mice and in C57Bl/6 mice treated with platelet-derived growth factor–BB (PDGF). We tested the involvement of Cx43 MAPK phosphorylation in vitro using constructs for full-length Cx43 (Cx43) or the Cx43 C-terminus (Cx43CT) and produced null phosphorylation Ser>Ala (Cx43MK4A/Cx43CTMK4A) and phospho-mimetic Ser>Asp (Cx43MK4D/Cx43CTMK4D) mutations. Coimmunoprecipitation studies in primary VSMC isolated from Cx43 wild-type (Cx43+/+) and Cx43 null (Cx43−/−) mice and analytic size exclusion studies of purified proteins identify that interactions between cyclin E and Cx43 requires Cx43 MAPK phosphorylation. We further demonstrate that Cx43 MAPK phosphorylation is required for PDGF-mediated VSMC proliferation. Finally, using a novel knock-in mouse containing Cx43-MK4A mutation, we show in vivo that interactions between Cx43 and cyclin E are lost and VSMC proliferation does not occur after treatment of carotids with PDGF and that neointima formation is significantly reduced in carotids after injury. Conclusions: We identify MAPK-phosphorylated Cx43 as a novel interacting partner of cyclin E in VSMC and show that this interaction is critical for VSMC proliferation. This novel interaction may be important in the development of atherosclerotic lesions.


Nature Communications | 2015

Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation

Alexander W. Lohman; Igor L. Leskov; Joshua T. Butcher; Scott R. Johnstone; Tara A. Stokes; Daniela Begandt; Leon J. DeLalio; Angela K. Best; Silvia Penuela; Norbert Leitinger; Kodi S. Ravichandran; Karen Y. Stokes; Brant E. Isakson

Inflammatory cell recruitment to local sites of tissue injury and/or infection is controlled by a plethora of signalling processes influencing cell-to-cell interactions between the vascular endothelial cells (ECs) in post-capillary venules and circulating leukocytes. Recently, ATP-sensitive P2Y purinergic receptors have emerged as downstream regulators of EC activation in vascular inflammation. However, the mechanism(s) regulating cellular ATP release in this response remains elusive. Here we report that the ATP-release channel Pannexin1 (Panx1) opens downstream of EC activation by TNF-α. This process involves activation of type-1 TNF receptors, recruitment of Src family kinases (SFK) and SFK-dependent phosphorylation of Panx1. Using an inducible, EC-specific Panx1 knockout mouse line, we report a previously unidentified role for Panx1 channels in promoting leukocyte adhesion and emigration through the venous wall during acute systemic inflammation, placing Panx1 channels at the centre of cytokine crosstalk with purinergic signalling in the endothelium.


Science Signaling | 2015

A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells

Marie Billaud; Yu-Hsin Chiu; Alexander W. Lohman; Thibaud Parpaite; Joshua T. Butcher; Stephanie Mutchler; Leon J. DeLalio; Mykhaylo V. Artamonov; Joanna K. Sandilos; Angela K. Best; Avril V. Somlyo; Roger J. Thompson; Thu H. Le; Kodi S. Ravichandran; Douglas A. Bayliss; Brant E. Isakson

The ATP-releasing channel Panx1 is specifically involved in blood pressure regulation by adrenergic signaling. Regulating blood pressure with ATP Blood pressure is dynamically regulated to enable rapid responses to changes in position and physical or emotional stress, such as exercise or anger and fear. Many signals that activate G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) control vascular tone, including norepinephrine (also known as noradrenaline) released by the sympathetic nervous system, which increases blood pressure. Billaud et al. report that the α1 adrenoreceptor (α1AR)—but not the endothelin-1 or serotonin receptor, which are also Gαq-coupled GPCRs and stimulate vasoconstriction—is specifically coupled to activation of the ATP (adenosine 5′-triphosphate)–releasing channel pannexin1 (Panx1). Mice lacking Panx1 in smooth muscle cells were hypotensive, specifically during their active period of the day. Isolated arteries from these mice did not release ATP and contracted less in response to adrenoreceptor stimulation. Thus, ATP release through Panx1 channels specifically contributes to blood pressure regulation by the sympathetic nervous system. Both purinergic signaling through nucleotides such as ATP (adenosine 5′-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.


Circulation Research | 2010

Plasminogen Activator Inhibitor-1 Regulates Myoendothelial Junction Formation

Katherine R. Heberlein; Adam C. Straub; Angela K. Best; Mark A. Greyson; Robin Looft-Wilson; Poonam R. Sharma; Akshaya K. Meher; Norbert Leitinger; Brant E. Isakson

Rationale: Plasminogen activator inhibitor-1 (PAI-1) is a biomarker for several vascular disease states; however, its target of action within the vessel wall is undefined. Objective: Determine the ability of PAI-1 to regulate myoendothelial junction (MEJ) formation. Methods and Results: MEJs are found throughout the vasculature linking endothelial cells (ECs) and vascular smooth muscle cells. Using a vascular cell coculture we isolated MEJ fractions and performed two-dimensional differential gel electrophoresis. Mass spectrometry identified PAI-1 as being enriched within MEJ fractions, which we confirmed in vivo. In the vascular cell coculture, recombinant PAI-1 added to the EC monolayer significantly increased MEJs. Conversely, addition of a PAI-1 monoclonal antibody to the EC monolayer reduced the number of MEJs. This was also observed in vivo where mice fed a high fat diet had increased PAI-1 and MEJs and the number of MEJs in coronary arterioles of PAI-1−/− mice was significantly reduced when compared to C57Bl/6 mice. The presence of MEJs in PAI-1−/− coronary arterioles was restored when their hearts were transplanted into and exposed to the circulation of C57Bl/6 mice. Application of biotin-conjugated PAI-1 to the EC monolayer in vitro confirmed the ability of luminal PAI-1 to translocate to the MEJ. Functionally, phenylephrine-induced heterocellular calcium communication in the vascular cell coculture was temporally enhanced when recombinant PAI-1 was present, and prolonged when PAI-1 was absent. Conclusion: Our data implicate circulating PAI-1 as a key regulator of MEJ formation and a potential target for pharmacological intervention in diseases with vascular abnormalities (eg, diabetes mellitus).


Journal of Vascular Research | 2010

Site-specific connexin phosphorylation is associated with reduced heterocellular communication between smooth muscle and endothelium

Adam C. Straub; Scott R. Johnstone; Katherine R. Heberlein; Michael J. Rizzo; Angela K. Best; Scott Boitano; Brant E. Isakson

Background/Aims: Myoendothelial junctions (MEJs) represent a specialized signaling domain between vascular smooth muscle cells (VSMC) and endothelial cells (EC). The functional consequences of phosphorylation state of the connexins (Cx) at the MEJ have not been explored. Methods/Results: Application of adenosine 3′,5′-cyclic monophosphate sodium (pCPT) to mouse cremasteric arterioles reduces the detection of connexin 43 (Cx43) phosphorylated at its carboxyl terminal serine 368 site (S368) at the MEJ in vivo. After single-cell microinjection of a VSMC in mouse cremaster arterioles, only in the presence of pCPT was dye transfer to EC observed. We used a vascular cell co-culture (VCCC) and applied the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (PMA) or fibroblast growth factor-2 (FGF-2) to induce phosphorylation of Cx43 S368. This phosphorylation event was associated with a significant reduction in dye transfer and calcium communication. Using a novel method to monitor increases in intracellular calcium across the in vitro MEJ, we noted that PMA and FGF-2 both inhibited movement of inositol 1,4,5-triphosphate (IP3), but to a lesser extent Ca2+. Conclusion: These data indicate that site-specific connexin phosphorylation at the MEJ can potentially regulate the movement of solutes between EC and VSMC in the vessel wall.


Journal of Cellular Biochemistry | 2010

Enhanced connexin 43 expression delays intra‐mitoitc duration and cell cycle traverse independently of gap junction channel function

Scott R. Johnstone; Angela K. Best; Catherine S. Wright; Brant E. Isakson; Rachel J. Errington; Patricia E. Martin

Connexins (Cxs) and gap junction (GJ)‐mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate of cell cycle traverse independently of GJ channel function. Sodium butyrate (NaBu) or anti‐arrhythmic peptide (AAP10) were used to enhance Cx expression in HeLa cells stably expressing Cx43 (HeLa‐43) and primary cultures of human fibroblasts (HFF) that predominantly express Cx43. To reduce GJ‐mediated communication, 18‐α‐glycyrrhetinic acid (GA) was used. In HeLa‐43 and HFF cells, NaBu and AAP10 enhanced Cx43 expression and increased channel function, while GA reduced GJ‐mediated communication but did not significantly alter Cx43 expression levels. Timelapse microscopy and flow cytometry of HeLa‐WT (wild‐type, Cx deficient) and HeLa‐43 cells dissected cell cycle traverse and enabled measurements of intra‐mitotic time and determined levels of G1 arrest. Enhanced Cx43 expression increased mitotic durations corresponding with a G1 delay in cell cycle, which was linked to an increase in expression of the cell cycle inhibitor p21waf1/cip1 in both HeLa‐43 and HFF cells. Reductions in Cx43 channel function did not abrogate these responses, indicating that GJ channel function was not a critical factor in reducing cell proliferation in either cell type. We conclude that enhanced Cx43 expression and not GJ‐mediated communication, is involved in regulating cell cycle traverse. J. Cell. Biochem. 110: 772–782, 2010.

Collaboration


Dive into the Angela K. Best's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam C. Straub

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Penuela

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale W. Laird

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge