Angela L. Tyner
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela L. Tyner.
Current Topics in Developmental Biology | 1987
Elaine Fuchs; Angela L. Tyner; George J. Giudice; Douglas A. Marchuk; Amlan RayChaudhury; Marjorie Rosenberg
Publisher Summary As surface and lining tissues, human epithelial cells play a common protective role in the body. This role is manifested by the construction of extensive cytoskeletal architecture inside each cell. The surface of the skin has perhaps the greatest need for a protective cytoskeleton. While the filaments in the cortex cells of the hair are arranged in an orderly and rigid fashion, the bundles of filaments in the squames of the epidermis appear to be more loosely packed. The different organization of cytoskeletal elements within these two types of cells may contribute to the markedly distinct packing of cells within the two tissues. In contrast to the terminally differentiated epithelial cells on the body surface, the cells of the basal layer of the epidermis as well as cells of internal epithelia must maintain their ability to divide and to undergo normal metabolic processes and cell movement. In addition to the variation in the abundance of keratin filaments, the proteins that make up these filaments are also different for different epithelia. Different pairs of keratins seem to be expressed in different epithelial cells at different stages of development and differentiation. Some of the major mysteries have been (1) to determine the ways the differential expression of different pairs of keratins might relate to cytoskeletal design and (2) to elucidate the molecular mechanisms underlying this process. Recent sequence analyses of the keratins and the genes that encode these proteins have begun to reveal the answers to these questions.
Journal of Biological Chemistry | 2008
I-Ching Wang; Yi Ju Chen; Douglas E. Hughes; Timothy Ackerson; Michael L. Major; Vladimir V. Kalinichenko; Robert H. Costa; Pradip Raychaudhuri; Angela L. Tyner; Lester F. Lau
The Forkhead box M1 (FoxM1) protein is a proliferation-specific transcription factor that plays a key role in controlling both the G1/S and G2/M transitions through the cell cycle and is essential for the development of various cancers. We show here that FoxM1 directly activates the transcription of the c-Jun N-terminal kinase (JNK1) gene in U2OS osteosarcoma cells. Expression of JNK1, which regulates the expression of genes important for the G1/S transition, rescues the G1/S but not the G2/M cell cycle block in FoxM1-deficient cells. Knockdown of either FoxM1 or JNK1 inhibits tumor cell migration, invasion, and anchorage-independent growth. However, expression of JNK1 in FoxM1-depleted cells does not rescue these defects, indicating that JNK1 is a necessary but insufficient downstream mediator of FoxM1 in these processes. Consistent with this interpretation, FoxM1 regulates the expression of the matrix metalloproteinases MMP-2 and MMP-9, which play a role in tumor cell invasion, through JNK1-independent and -dependent mechanisms in U2OS cells, respectively. Taken together, these findings identify JNK1 as a critical transcriptional target of FoxM1 that contributes to FoxM1-regulated cell cycle progression, tumor cell migration, invasiveness, and anchorage-independent growth.
Molecular and Cellular Biology | 2006
Andrea Haegebarth; Wenjun Bie; Ruyan Yang; Susan E. Crawford; Valeri Vasioukhin; Elaine Fuchs; Angela L. Tyner
ABSTRACT Protein tyrosine kinase 6 (PTK6) (also called Brk or Sik) is an intracellular tyrosine kinase that is expressed in breast cancer and normal epithelial linings. In adult mice, PTK6 expression is high in villus epithelial cells of the small intestine. To explore functions of PTK6, we disrupted the mouse Ptk6 gene. We detected longer villi, an expanded zone of PCNA expression, and increased bromodeoxyuridine incorporation in the PTK6-deficient small intestine. Although differentiation of major epithelial cell types occurred, there was a marked delay in expression of intestinal fatty acid binding protein, suggesting a role for PTK6 in enterocyte differentiation. However, fat absorption was comparable in wild-type and Ptk6−/− mice. It was previously shown that the serine threonine kinase Akt is a substrate of PTK6 and that PTK6-mediated phosphorylation of Akt on tyrosine resulted in inhibition of Akt activity. Consistent with these findings, we detected increased Akt activity and nuclear β-catenin in intestines of PTK6-deficient mice and decreased nuclear localization of the Akt substrate FoxO1 in villus epithelial cells. PTK6 contributes to maintenance of tissue homeostasis through negative regulation of Akt in the small intestine and is associated with cell cycle exit and differentiation in normal intestinal epithelial cells.
Molecular and Cellular Biology | 2008
Hyun Jung Park; Robert H. Costa; Lester F. Lau; Angela L. Tyner; Pradip Raychaudhuri
ABSTRACT The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase.
Cancer Research | 2011
Zebin Wang; Hyun Jung Park; Janai R. Carr; Yi Ju Chen; Yu Zheng; Jing Li; Angela L. Tyner; Robert H. Costa; Srilata Bagchi; Pradip Raychaudhuri
Malignant neuroblastomas contain stem-like cells. These tumors also overexpress the Forkhead box transcription factor FoxM1. In this study, we investigated the roles of FoxM1 in the tumorigenicity of neuroblastoma. We showed that depletion of FoxM1 inhibits anchorage-independent growth and tumorigenicity in mouse xenografts. Moreover, knockdown of FoxM1 induces differentiation in neuroblastoma cells, suggesting that FoxM1 plays a role in the maintenance of the undifferentiated progenitor population. We showed that inhibition of FoxM1 in malignant neuroblastoma cells leads to the downregulation of the pluripotency genes sex determining region Y box 2 (Sox2) and Bmi1. We provided evidence that FoxM1 directly activates expression of Sox2 in neuroblastoma cells. By using a conditional deletion system and neurosphere cultures, we showed that FoxM1 is important for expression of Sox2 and Bmi1 in the mouse neural stem/progenitor cells and is critical for its self-renewal. Together, our observations suggested that FoxM1 plays an important role in the tumorigenicity of the aggressive neuroblastoma cells through maintenance of the undifferentiated state.
Journal of Cell Science | 2010
Helena L. Palka-Hamblin; Jessica Gierut; Wenjun Bie; Patrick M. Brauer; Yu Zheng; John M. Asara; Angela L. Tyner
Disruption of the gene encoding protein tyrosine kinase 6 (PTK6) leads to increased growth, impaired enterocyte differentiation and higher levels of nuclear β-catenin in the mouse small intestine. Here, we demonstrate that PTK6 associates with nuclear and cytoplasmic β-catenin and inhibits β-catenin- and T-cell factor (TCF)-mediated transcription. PTK6 directly phosphorylates β-catenin on Tyr64, Tyr142, Tyr331 and/or Tyr333, with the predominant site being Tyr64. However, mutation of these sites does not abrogate the ability of PTK6 to inhibit β-catenin transcriptional activity. Outcomes of PTK6-mediated regulation appear to be dependent on its intracellular localization. In the SW620 colorectal adenocarcinoma cell line, nuclear-targeted PTK6 negatively regulates endogenous β-catenin/TCF transcriptional activity, whereas membrane-targeted PTK6 enhances β-catenin/TCF regulated transcription. Levels of TCF4 and the transcriptional co-repressor TLE/Groucho increase in SW620 cells expressing nuclear-targeted PTK6. Knockdown of PTK6 in SW620 cells leads to increased β-catenin/TCF transcriptional activity and increased expression of β-catenin/TCF target genes Myc and Survivin. Ptk6-null BAT-GAL mice, containing a β-catenin-activated LacZ reporter transgene, have increased levels of β-galactosidase expression in the gastrointestinal tract. The ability of PTK6 to negatively regulate β-catenin/TCF transcription by modulating levels of TCF4 and TLE/Groucho could contribute to its growth-inhibitory activities in vivo.
Journal of Biological Chemistry | 2008
Vladimir Petrovic; Robert H. Costa; Lester F. Lau; Pradip Raychaudhuri; Angela L. Tyner
The Forkhead box M1 (FoxM1) transcription factor is essential for cell cycle progression and mitosis. FoxM1 regulates expression of Skp2 and Cks1, subunits of the SCF ubiquitin ligase complex, which ubiquitinates p27Kip1 and targets it for degradation. Kinase-interacting stathmin (KIS) is a growth factor-dependent nuclear kinase that regulates cell cycle progression by phosphorylating p27Kip1 to promote its nuclear export. Here we present an additional mechanism of FoxM1-mediated regulation of p27Kip1 and provide evidence that FoxM1 regulates growth factor-induced expression of KIS. In cells harboring FoxM1 deletion or expressing FoxM1-short interfering RNA, the expression of KIS is impaired, leading to an accumulation of p27Kip1 in the nucleus. Furthermore, we show that KIS is a direct transcriptional target of FoxM1. Thus FoxM1 promotes cell cycle progression by down-regulating p27Kip1 through multiple mechanisms.
Cancer Biology & Therapy | 2010
Vladimir Petrovic; Robert H. Costa; Lester F. Lau; Pradip Raychaudhuri; Angela L. Tyner
The Forkhead Box transcription factor FoxM1 regulates expression of genes that promote cell cycle progression, and it plays essential roles in the development of liver, lung, prostate and colorectal tumors. Thiazolidinediones (TZDs) activate the peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated nuclear receptor transcription factor. We found that treatment of the human hepatoma cell lines HepG2 and PLC/PRF/5 cells with TZDs leads to inhibition of FoxM1 gene expression. No PPARγ/retinoid X receptor (RXR) consensus DNA binding sites were detected in the FoxM1 promoter extending to -10 kb upstream, and knockdown of PPARγ had no impact on TZD mediated downregulation of FoxM1 expression. Previously, others showed that PPARγ agonists inhibit the expression and DNA-binding activity of the Sp1 transcription factor. Here we show that Sp1 binds to the FoxM1 promoter region and positively regulates FoxM1 transcription, while mithramycin, a chemotherapy drug that specifically binds GC rich sequences in the DNA and inhibits activities of Sp1, inhibits expression of FoxM1. Our data suggest that TZD mediated suppression of Sp1 is responsible for downregulation of FoxM1 gene expression. Inhibition of FoxM1 expression by TZDs provides a new mechanism for TZD mediated negative regulation of cancer cell growth. FoxM1 expression and activity in cancer cells can be targeted using PPARγ agonists or the anti-neoplastic antibiotic mithramycin.
Cell Cycle | 2009
Patrick M. Brauer; Angela L. Tyner
The Fyn related kinase FRK, originally called RAK, is a member of a small family of intracellular Src-related tyrosine kinases that includes PTK6 and Srms. These kinases share a conserved gene structure that is distinct from that of the Src family. Expression of FRK and PTK6 was originally identified in melanoma, breast cancer cells and normal intestinal epithelium, and both FRK and PTK6 have been implicated in the regulation of epithelial cell differentiation and apoptosis. Recently FRK was reported to phosphorylate the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10), a negative regulator of phosphatidylinositol 3 kinase (PI3K) signaling and AKT activation. FRK-mediated tyrosine phosphorylation of PTEN suppressed its association with NEDD4-1, an E3 ubiquitin ligase that may target it for polyubiquitination and proteosomal degradation. As a positive regulator of PTEN, FRK suppresses AKT signaling and inhibits breast cancer cell tumorgenicity in xenograft models. Both FRK and the related tyrosine kinase PTK6 appear to have multiple context-dependent functions, including the ability to regulate AKT. Although PTK6 negatively regulates AKT signaling in normal tissues in vivo, it may enhance AKT signaling in breast cancer cells. In contrast, FRK, which is expressed in the normal mammary gland but lost in some breast tumors, has tumor suppressor functions in mammary gland cells.
Cell Cycle | 2010
Patrick M. Brauer; Yu Zheng; Lin Wang; Angela L. Tyner
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is nuclear in epithelial cells of the normal prostate, but cytoplasmic in prostate tumors and in the PC3 prostate tumor cell line. The impact of altered PTK6 intracellular localization in prostate tumor cells has not been extensively explored. Knockdown of endogenous cytoplasmic PTK6 resulted in decreased PC3 cell proliferation and colony formation, suggesting that cytoplasmic PTK6 stimulates oncogenic pathways. In contrast, reintroduction of PTK6 into nuclei of PC3 cells had a negative effect on growth. Enhanced tyrosine phosphorylation of the PTK6 substrate Sam68 was detected in cells expressing nuclear-targeted PTK6. We found that mechanisms regulating nuclear localization of PTK6 are intact in PC3 cells. Transiently over-expressed PTK6 readily enters the nucleus. Ectopic expression of ALT-PTK6, a catalytically inactive splice variant of PTK6, did not affect localization of endogenous PTK6 in PC3 cells. Using leptomycin B, we confirmed that cytoplasmic localization of endogenous PTK6 is not due to CRM-1/exportin-1 mediated nuclear export. In addition, over-expression of the PTK6 nuclear substrate Sam68 is not sufficient to bring PTK6 into the nucleus. While exogenous PTK6 was readily detected in the nucleus when transiently expressed at high levels, low-level expression of inducible wild type PTK6 in stable cell lines resulted in its cytoplasmic retention. Our results suggest that retention of PTK6 in the cytoplasm of prostate cancer cells disrupts its ability to regulate nuclear substrates and leads to aberrant growth. In prostate cancer, restoring PTK6 nuclear localization may have therapeutic advantages.