Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Lauricella is active.

Publication


Featured researches published by Angela Lauricella.


Journal of Structural Biology | 2003

A deliberate approach to screening for initial crystallization conditions of biological macromolecules

Joseph R. Luft; Robert J. Collins; Nancy Fehrman; Angela Lauricella; Christina K. Veatch; George T. DeTitta

A method to rationally predict crystallization conditions for a previously uncrystallized macromolecule has not yet been developed. One way around this problem is to determine initial crystallization conditions by casting a wide net, surveying a large number of chemical and physical conditions to locate crystallization leads. A facility that executes the rapid survey of crystallization lead conditions is described in detail. Results and guidelines for the initial screening of crystallization conditions, applicable to both manual and robotic setups, are discussed.


Nature Biotechnology | 2009

Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data.

W. Nicholson Price; Yang Chen; Samuel K. Handelman; Helen Neely; Philip C. Manor; Richard Karlin; Rajesh Nair; Jinfeng Liu; Michael Baran; John K. Everett; Saichiu N Tong; Farhad Forouhar; Swarup S Swaminathan; Thomas B. Acton; Rong Xiao; Joseph R. Luft; Angela Lauricella; George T. DeTitta; Burkhard Rost; Gaetano T. Montelione; John F. Hunt

Crystallization is the most serious bottleneck in high-throughput protein-structure determination by diffraction methods. We have used data mining of the large-scale experimental results of the Northeast Structural Genomics Consortium and experimental folding studies to characterize the biophysical properties that control protein crystallization. This analysis leads to the conclusion that crystallization propensity depends primarily on the prevalence of well-ordered surface epitopes capable of mediating interprotein interactions and is not strongly influenced by overall thermodynamic stability. We identify specific sequence features that correlate with crystallization propensity and that can be used to estimate the crystallization probability of a given construct. Analyses of entire predicted proteomes demonstrate substantial differences in the amino acid–sequence properties of human versus eubacterial proteins, which likely reflect differences in biophysical properties, including crystallization propensity. Our thermodynamic measurements do not generally support previous claims regarding correlations between sequence properties and protein stability.


Acta Crystallographica Section D-biological Crystallography | 2003

Automatic classification of sub‐microlitre protein‐crystallization trials in 1536‐well plates

Christian Cumbaa; Angela Lauricella; Nancy Fehrman; Christina K. Veatch; Robert J. Collins; Joseph R. Luft; George T. DeTitta; Igor Jurisica

A technique for automatically evaluating microbatch (400 nl) protein-crystallization trials is described. This method addresses analysis problems introduced at the sub-microlitre scale, including non-uniform lighting and irregular droplet boundaries. The droplet is segmented from the well using a loopy probabilistic graphical model with a two-layered grid topology. A vector of 23 features is extracted from the droplet image using the Radon transform for straight-edge features and a bank of correlation filters for microcrystalline features. Image classification is achieved by linear discriminant analysis of its feature vector. The results of the automatic method are compared with those of a human expert on 32 1536-well plates. Using the human-labeled images as ground truth, this method classifies images with 85% accuracy and a ROC score of 0.84. This result compares well with the experimental repeatability rate, assessed at 87%. Images falsely classified as crystal-positive variously contain speckled precipitate resembling microcrystals, skin effects or genuine crystals falsely labeled by the human expert. Many images falsely classified as crystal-negative variously contain very fine crystal features or dendrites lacking straight edges. Characterization of these misclassifications suggests directions for improving the method.


Protein Science | 2007

Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature

Joseph R. Luft; Jennifer R. Wolfley; Meriem I. Said; Raymond M. Nagel; Angela Lauricella; Jennifer L. Smith; Max Thayer; Christina K. Veatch; Edward H. Snell; Michael G. Malkowski; George T. DeTitta

An efficient optimization method for the crystallization of biological macromolecules has been developed and tested. This builds on a successful high‐throughput technique for the determination of initial crystallization conditions. The optimization method takes an initial condition identified through screening and then varies the concentration of the macromolecule, precipitant, and the growth temperature in a systematic manner. The amount of sample and number of steps is minimized and no biochemical reformulation is required. In the current application a robotic liquid handling system enables high‐throughput use, but the technique can easily be adapted in a nonautomated setting. This method has been applied successfully for the rapid optimization of crystallization conditions in nine representative cases.


Proteins | 2005

Crystal structure of glyceraldehyde‐3‐phosphate dehydrogenase from Plasmodium falciparum at 2.25 Å resolution reveals intriguing extra electron density in the active site

Mark A. Robien; Jürgen Bosch; Frederick S. Buckner; Wesley C. Van Voorhis; Elizabeth A. Worthey; Peter J. Myler; Christopher Mehlin; Erica Boni; Oleksandr Kalyuzhniy; Lori Anderson; Angela Lauricella; Stacy Gulde; Joseph R. Luft; George T. DeTitta; Jonathan M. Caruthers; Keith O. Hodgson; Michael Soltis; Frank Zucker; Christophe L. M. J. Verlinde; Ethan A. Merritt; Lori W. Schoenfeld; Wim G. J. Hol

The crystal structure of D‐glyceraldehyde‐3‐phosphate dehydrogenase (PfGAPDH) from the major malaria parasite Plasmodium falciparum is solved at 2.25 Å resolution. The structure of PfGAPDH is of interest due to the dependence of the malaria parasite in infected human erythrocytes on the glycolytic pathway for its energy generation. Recent evidence suggests that PfGAPDH may also be required for other critical activities such as apical complex formation. The cofactor NAD+ is bound to all four subunits of the tetrameric enzyme displaying excellent electron densities. In addition, in all four subunits a completely unexpected large island of extra electron density in the active site is observed, approaching closely the nicotinamide ribose of the NAD+. This density is most likely the protease inhibitor AEBSF, found in maps from two different crystals. This putative AEBSF molecule is positioned in a crucial location and hence our structure, with expected and unexpected ligands bound, can be of assistance in lead development and design of novel antimalarials. Proteins 2006.


Protein Science | 2005

Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily.

Jonathan M. Caruthers; Frank Zucker; Elizabeth A. Worthey; Peter J. Myler; Fred Buckner; Wes Van Voorhuis; Chris Mehlin; Erica Boni; Tiffany Feist; Joseph R. Luft; Stacey Gulde; Angela Lauricella; Oleksandr Kaluzhniy; Lori Anderson; Isolde Le Trong; Margaret A. Holmes; Thomas Earnest; Michael Soltis; Keith O. Hodgson; Wim G. J. Hol; Ethan A. Merritt

We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well‐characterized N‐carbamoylsarcosine‐amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial‐associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter‐subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure.


Acta Crystallographica Section D-biological Crystallography | 2008

Establishing a training set through the visual analysis of crystallization trials. Part I: ∼150 000 images

Edward H. Snell; Joseph R. Luft; Stephen A. Potter; Angela Lauricella; Stacey Gulde; Michael G. Malkowski; Mary Koszelak-Rosenblum; Meriem I. Said; Jennifer L. Smith; Christina K. Veatch; Robert J. Collins; Geoff Franks; Max Thayer; Christian Cumbaa; Igor Jurisica; George T. DeTitta

As part of a training set for automated image analysis, ∼150 000 images of crystallization experiments from 96 diverse macromolecules have been visually classified within seven categories. Outcomes and trends are analyzed.


Journal of Molecular Biology | 2010

The crystal structure and activity of a putative trypanosomal nucleoside phosphorylase reveal it to be a homodimeric uridine phosphorylase.

Eric T. Larson; Devaraja G. Mudeppa; J. Robert Gillespie; Natascha Mueller; Alberto J. Napuli; Jennifer A. Arif; Jenni Ross; Tracy L. Arakaki; Angela Lauricella; George T. DeTitta; Joseph R. Luft; Frank Zucker; Christophe L. M. J. Verlinde; Erkang Fan; Wesley C. Van Voorhis; Frederick S. Buckner; Pradipsinh K. Rathod; Wim G. J. Hol; Ethan A. Merritt

Purine nucleoside phosphorylases (PNPs) and uridine phosphorylases (UPs) are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis; hence, the purine salvage pathway is of potential therapeutic interest. Information about pyrimidine biosynthesis in these organisms is much more limited. Though all seem to carry at least a subset of enzymes from each pathway, the dependency on de novo pyrimidine synthesis versus salvage varies from organism to organism and even from one growth stage to another. We have structurally and biochemically characterized a putative nucleoside phosphorylase (NP) from the pathogenic protozoan Trypanosoma brucei and find that it is a homodimeric UP. This is the first characterization of a UP from a trypanosomal source despite this activity being observed decades ago. Although this gene was broadly annotated as a putative NP, it was widely inferred to be a purine nucleoside phosphorylase. Our characterization of this trypanosomal enzyme shows that it is possible to distinguish between PNP and UP activity at the sequence level based on the absence or presence of a characteristic UP-specificity insert. We suggest that this recognizable feature may aid in proper annotation of the substrate specificity of enzymes in the NP family.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2006

Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major.

Tracy L. Arakaki; Isolde Le Trong; Eric M. Phizicky; Erin Quartley; George T. DeTitta; Joseph R. Luft; Angela Lauricella; Lori Anderson; Oleksandr Kalyuzhniy; Elizabeth A. Worthey; Peter J. Myler; David E. Kim; David Baker; Wim G. J. Hol; Ethan A. Merritt

The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD) using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (Rfree = 0.229) at 1.60 A resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.


Proteins | 2005

Structure of a ribulose 5‐phosphate 3‐epimerase from Plasmodium falciparum

Jonathan M. Caruthers; Jürgen Bosch; Frederick S. Buckner; W. C. Van Voorhis; Peter J. Myler; Elizabeth A. Worthey; Christopher Mehlin; Erica Boni; George T. DeTitta; Joseph R. Luft; Angela Lauricella; Oleksandr Kalyuzhniy; Lori Anderson; Frank Zucker; Michael Soltis; Wim G. J. Hol

The crystal structure of Pfal009167AAA, a putative ribulose 5‐phosphate 3‐epimerase (PfalRPE) from Plasmodium falciparum, has been determined to 2 Å resolution. RPE represents an exciting potential drug target for developing antimalarials because it is involved in the shikimate and the pentose phosphate pathways. The structure is a classic TIM‐barrel fold. A coordinated Zn ion and a bound sulfate ion in the active site of the enzyme allow for a greater understanding of the mechanism of action of this enzyme. This structure is solved in the framework of the Structural Genomics of Pathogenic Protozoa (SGPP) consortium. Proteins 2006.

Collaboration


Dive into the Angela Lauricella's collaboration.

Top Co-Authors

Avatar

Joseph R. Luft

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Wim G. J. Hol

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Zucker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Boni

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lori Anderson

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge