Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Lombardi is active.

Publication


Featured researches published by Angela Lombardi.


Diabetes | 2012

Age-Related Impairment in Insulin Release: The Essential Role of β2-Adrenergic Receptor

Gaetano Santulli; Angela Lombardi; Daniela Sorriento; Antonio Anastasio; Carmine Del Giudice; Pietro Formisano; Francesco Beguinot; Bruno Trimarco; Claudia Miele; Guido Iaccarino

In this study, we investigated the significance of β2-adrenergic receptor (β2AR) in age-related impaired insulin secretion and glucose homeostasis. We characterized the metabolic phenotype of β2AR-null C57Bl/6N mice (β2AR−/−) by performing in vivo and ex vivo experiments. In vitro assays in cultured INS-1E β-cells were carried out in order to clarify the mechanism by which β2AR deficiency affects glucose metabolism. Adult β2AR−/− mice featured glucose intolerance, and pancreatic islets isolated from these animals displayed impaired glucose-induced insulin release, accompanied by reduced expression of peroxisome proliferator–activated receptor (PPAR)γ, pancreatic duodenal homeobox-1 (PDX-1), and GLUT2. Adenovirus-mediated gene transfer of human β2AR rescued these defects. Consistent effects were evoked in vitro both upon β2AR knockdown and pharmacologic treatment. Interestingly, with aging, wild-type (β2AR+/+) littermates developed impaired insulin secretion and glucose tolerance. Moreover, islets from 20-month-old β2AR+/+ mice exhibited reduced density of β2AR compared with those from younger animals, paralleled by decreased levels of PPARγ, PDX-1, and GLUT2. Overexpression of β2AR in aged mice rescued glucose intolerance and insulin release both in vivo and ex vivo, restoring PPARγ/PDX-1/GLUT2 levels. Our data indicate that reduced β2AR expression contributes to the age-related decline of glucose tolerance in mice.


Diabetologia | 2012

Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway

Angela Lombardi; Luca Ulianich; Antonella Sonia Treglia; Cecilia Nigro; Luca Parrillo; Dario Domenico Lofrumento; Giuseppe Nicolardi; Corrado Garbi; Francesco Beguinot; Claudia Miele; B. Di Jeso

Aims/hypothesisBeta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis.MethodsWe used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence.ResultsGlucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose.Conclusions/interpretationGlucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.


Journal of Autoimmunity | 2017

Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress

Angela Lombardi; Yaron Tomer

Despite substantial advances in the research exploring the pathogenesis of Type 1 Diabetes (T1D), the pathophysiological mechanisms involved remain unknown. We hypothesized in this study that interferon alpha (IFNα) participates in the early stages of T1D development by triggering endoplasmic reticulum (ER) stress. To verify our hypothesis, human islets and human EndoC-βH1 cells were exposed to IFNα and tested for ER stress markers, glucose stimulated insulin secretion (GSIS) and insulin content. IFNα treatment induced upregulation of ER stress markers including Binding immunoglobulin Protein, phospho-eukaryotic translation initiation factor 2α, spliced- X-box binding protein-1, C/EBP homologous protein and activating transcription factor 4. Intriguingly, IFNα treatment did not impair GSIS but significantly decreased insulin production in both human islets and EndoC-βH1 cells. Furthermore, IFNα decreased the expression of both proinsulin convertase 1 and proinsulin convertase 2, suggesting an altered functional state of the beta cells characterized by a slower proinsulin-insulin conversion. Pretreatment of both human islets and EndoC-βH1 cells with chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid completely prevented IFNα effects, indicating an ER stress-mediated impairment of insulin production. We demonstrated for the first time that IFNα elicits ER stress in human beta cells providing a novel mechanistic role for this virus-induced cytokine in the development of T1D. Compounds targeting molecular processes altered in ER-stressed beta cells could represent a potential therapeutic strategy to prevent IFNα-induced beta cell dysfunction in the early onset of T1D.


Cell Communication and Signaling | 2017

Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure

Angela Lombardi; Bruno Trimarco; Guido Iaccarino; Gaetano Santulli

BackgroundOne of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified.MethodsWe studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells.ResultsWe demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS.ConclusionOur observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.


Scientific Reports | 2017

Sirolimus induces depletion of intracellular calcium stores and mitochondrial dysfunction in pancreatic beta cells

Angela Lombardi; Jessica Gambardella; Xue Liang Du; Daniela Sorriento; Maurizio Mauro; Guido Iaccarino; Bruno Trimarco; Gaetano Santulli

Sirolimus (rapamycin) is an immunosuppressive drug used in transplantation. One of its major side effects is the increased risk of diabetes mellitus; however, the exact mechanisms underlying such association have not been elucidated. Here we show that sirolimus impairs glucose-stimulated insulin secretion both in human and murine pancreatic islets and in clonal β cells in a dose- and time-dependent manner. Importantly, we demonstrate that sirolimus markedly depletes calcium (Ca2+) content in the endoplasmic reticulum and significantly decreases glucose-stimulated mitochondrial Ca2+ uptake. Crucially, the reduced mitochondrial Ca2+ uptake is mirrored by a significant impairment in mitochondrial respiration. Taken together, our findings indicate that sirolimus causes depletion of intracellular Ca2+ stores and alters mitochondrial fitness, eventually leading to decreased insulin release. Our results provide a novel molecular mechanism underlying the increased incidence of diabetes mellitus in patients treated with this drug.


Endocrinology | 2016

CD40 SIGNALING IN GRAVES' DISEASE IS MEDIATED THROUGH CANONICAL AND NON-CANONICAL THYROIDAL NF-κB ACTIVATION.

Hanna J. Lee; Angela Lombardi; Mihaela Stefan; Cheuk W. Li; William B. Inabnet; Randall P. Owen; Erlinda Concepcion; Yaron Tomer

CD40, a tumor necrosis factor receptor, is a major immune-modulating susceptibility gene for Graves disease (GD) as well as for a variety of other autoimmune diseases. Its broad association with autoimmunity underscores its paramount role in the development of a normal adaptive immune response, primarily in coordinating effective antigen presentation. The molecular pathways by which CD40 activation in the thyroid induces GD are unknown. In this study, we investigated whether NF-κB, a ubiquitious family of transcription factors, mediates the downstream effects of thyroid-specific CD40 activation. Cultured primary human thyrocytes, from patients with and without GD, underwent CD40 stimulation. Once stimulated, cytokines and transcription factors specific for either the canonical nuclear factor κB (NF-κB)1 pathway [interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α], which primarily recruits cells for innate immunity, or the noncanonical NF-κB2 pathway [B cell-activating factor of the TNF family, CC chemokine ligand (CCL)21], which directs B cell viability, were analyzed. Significant upregulation in the messenger RNA and protein levels of both canonical and noncanonical pathway cytokines was observed. Western blot analyses of the specific transcription factors for the NF-κB1 and NF-κB2 pathways (p65 and p100/p52, respectively) demonstrated that p65 is constitutively expressed. In contrast, CD40 stimulation robustly increased the expression of the NF-κB2 p52 transcription factor, and the upregulation was significantly more profound in the GD tissue than in the normal thyroid tissue. Our data show that CD40 activity in thyrocytes is prominently mediated via NF-κB and furthermore suggest that the NF-κB1 and NF-κB2 pathways both contribute to the triggering and the progression of GD.


Journal of Autoimmunity | 2018

Interferon alpha: The key trigger of type 1 diabetes

Angela Lombardi; Effie Tsomos; Sara Salehi Hammerstad; Yaron Tomer

IFNα is a cytokine essential to a vast array of immunologic processes. Its induction early in the innate immune response provides a priming mechanism that orchestrates numerous subsequent pathways in innate and adaptive immunity. Despite its beneficial effects in viral infections IFNα has been reported to be associated with several autoimmune diseases including autoimmune thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, primary biliary cholangitis, and recently emerged as a major cytokine that triggers Type 1 Diabetes. In this review, we dissect the role of IFNα in T1D, focusing on the potential pathophysiological mechanisms involved. Evidence from human and mouse studies indicates that IFNα plays a key role in enhancing islet expression of HLA-I in patients with T1D, thereby increasing autoantigen presentation and beta cell activation of autoreactive cytotoxic CD8 T-lymphocytes. The binding of IFNα to its receptor induces the secretion of chemokines, attracting monocytes, T lymphocytes, and NK cells to the infected tissue triggering autoimmunity in susceptible individuals. Furthermore, IFNα impairs insulin production through the induction of endoplasmic reticulum stress as well as by impairing mitochondrial function. Due to its central role in the early phases of beta cell death, targeting IFNα and its pathways in genetically predisposed individuals may represent a potential novel therapeutic strategy in the very early stages of T1D.


Virology Journal | 2017

A preliminary analysis of hepatitis C virus in pancreatic islet cells

Jason T. Blackard; Ling Kong; Angela Lombardi; Dirk Homann; Sara Salehi Hammerstad; Yaron Tomer

BackgroundAn association between hepatitis C virus (HCV) and type 2 diabetes (T2D) is supported by numerous epidemiologic studies. We hypothesized that HCV could infect human pancreatic islet cells in vitro.MethodsMeasures of HCV RNA synthesis and protein production were used to evaluate HCV infection of pancreatic islets recovered from human donors.ResultsSignificant co-staining of insulin and the HCV entry factor CD81 was observed in pancreatic islets. Positive- and negative-sense HCV RNA were detected in HCV-exposed islets at days 1, 3, 7, and 14 post-infection. The HCV core and NS3 proteins were expressed and increased with time providing further evidence of viral replication. Interferon and an HCV polymerase inhibitor reduced viral replication in islet cells. In HCV-infected islets, TNFα levels were elevated at days 1, 3, and 7 post-infection, while IL-6 levels were elevated at day 1 but not days 3 or 7. Overall, the expression of miR-122 was low in islets compared to the Huh7.5 hepatocyte-derived cell line, although the relative expression of miR-122 increased in islet cells after viral infection (1, 6.63, and 5.83 at days 1, 3, and 7, respectively).ConclusionsIn this pilot study, viral infection was demonstrated in pancreatic islet cells from multiple donors using complementary measures of viral replication, thus providing evidence of in vitro infection. Altered cytokine expression may contribute to the development of insulin deficiency, and understanding the etiology of diabetes in individuals with HCV infection may facilitate the development of novel treatment modalities and prevention strategies. This in vitro system provides an important model for mechanistic studies of HCV-pancreas interactions and facilitates future studies of the potential impact of viral infection on islet cell function.


The Journal of Clinical Endocrinology and Metabolism | 2018

Interferon Alpha Triggers Autoimmune Thyroid Diseases via Lysosomal-Dependent Degradation of Thyroglobulin.

Larissa C. Faustino; Angela Lombardi; Randall P. Owen; Steven K. Libutti; Yaron Tomer

Context Autoimmune thyroid diseases (AITDs) arise from complex interactions among genetic, epigenetic, and environmental factors. Thyroglobulin (TG) is a major susceptibility gene for both Graves disease and Hashimoto thyroiditis. Interferon-α (IFNα), a cytokine secreted during viral infections, has emerged as a key trigger of AITD. We have shown that IFNα upregulates TG transcription; however, how the upregulation of TG transcription by IFNα triggers AITD is still unknown. Objective To evaluate how IFNα triggers AITD by testing its effects on TG processing. Design We exposed human thyroid cells to IFNα and evaluated its effects on TG expression and processing. Results Human thyroid cells exposed to INFα had increased levels of TG mRNA but reduced TG protein levels, indicating TG protein degradation. IFNα induced endoplasmic reticulum stress, but surprisingly, neither the use of chemical chaperones nor proteasome inhibitor prevented IFNα-induced TG degradation. IFNα also increased LysoTracker staining and autophagy flux measured by net light chain 3 (LC3)-II and p62 fluxes. In addition, expression of autophagy markers LC3 and autophagy-related gene 5 was higher in thyroid tissues from patients with AITD. Finally, blocking lysosomal degradation prevented IFNα-induced degradation of TG. Conclusion We have shown in this study IFNα-induced lysosomal-dependent degradation of TG in human thyroid cells. Our findings suggest that during viral infections, local thyroidal IFNα production can lead to lysosomal TG degradation, releasing pathogenic TG peptides that can trigger AITD.


Neoplasia | 2011

Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner

Stefania De Vitis; Antonella Sonia Treglia; Luca Ulianich; Stefano Turco; Giuseppe Terrazzano; Angela Lombardi; Claudia Miele; Corrado Garbi; Francesco Beguinot; Bruno Di Jeso

Collaboration


Dive into the Angela Lombardi's collaboration.

Top Co-Authors

Avatar

Yaron Tomer

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gaetano Santulli

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bruno Trimarco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Claudia Miele

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Beguinot

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corrado Garbi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daniela Sorriento

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luca Ulianich

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Randall P. Owen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge