Ângela Maria Moraes
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ângela Maria Moraes.
Drug Delivery | 2003
Oselys Rodriguez Justo; Ângela Maria Moraes
Liposomal encapsulation of tuberculostatic drugs can potentially increase their therapeutic index. The incorporation of isoniazid, pyrazinamide, rifampicin, ethionamide, and streptomycin in extruded distearoylphosphatidylcholine/cholesterol liposomes designed for administration through inhalation was evaluated. Ethionamide and rifampicin were incorporated during lipid film formation, whereas solutions of the remaining drugs were used to hydrate preformed lipid bilayers. Final drug to lipid ratios around 0.3 were achieved for isoniazid and pyrazinamide, and mean vesicle diameters varied from 286 to 329 nm. No expressive drug leakage or mean vesicle diameter changes occurred during 3 weeks. No significant incorporation was achieved for streptomycin, ethionamide, and rifampicin.
Biotechnology Advances | 2012
Ângela Maria Moraes; Soraia Attie Calil Jorge; Renato Mancini Astray; Claudio Alberto Torres Suazo; Camilo E. Calderón Riquelme; Elisabeth F.P. Augusto; Aldo Tonso; Marilena Martins Pamboukian; Rosane A.M. Piccoli; Manuel F. Barral; Carlos Alberto Pereira
In the present review we discuss strategies that have been used for heterologous gene expression in Drosophila melanogaster Schneider 2 (S2) cells using plasmid vectors. Since the growth of S2 cells is not dependent on anchorage to solid substrates, these cells can be easily cultured in suspension in large volumes. The factors that most affect the growth and gene expression of S2 cells, namely cell line, cell passage, inoculum concentration, culture medium, temperature, dissolved oxygen concentration, pH, hydrodynamic forces and toxic metabolites, are discussed by comparison with other insect and mammalian cells. Gene expression, cell metabolism, culture medium formulation and parameters involved in cellular respiration are particularly emphasized. The experience of the authors with the successful expression of a biologically functional protein, the rabies virus glycoprotein (RVGP), by recombinant S2 cells is presented in the topics covered.
Journal of Biomedical Materials Research Part B | 2015
Guilherme Ferreira Caetano; Marco Andrey Cipriani Frade; Thiago Antônio Moretti de Andrade; Marcel Nani Leite; Cecilia Zorzi Bueno; Ângela Maria Moraes; João Tadeu Ribeiro-Paes
The purpose of this study was to evaluate the efficacy of chitosan-alginate membrane to accelerate wound healing in experimental cutaneous wounds. Two wounds were performed in Wistar rats by punching (1.5 cm diameter), treated with membranes moistened with saline solution (CAM group) or with saline only (SL group). After 2, 7, 14, and 21 days of surgery, five rats of each group were euthanized and reepithelialization was evaluated. The wounds/scars were harvested for histological, flow cytometry, neutrophil infiltrate, and hydroxyproline analysis. CAM group presented higher inflammatory cells recruitment as compared to SL group on 2(nd) day. On the 7(th) day, CAM group showed higher CD11b(+) level and lower of neutrophils than SL group. The CAM group presented higher CD4(+) cells influx than SL group on 2(nd) day, but it decreased during the follow up and became lower on 14(th) and 21(st) days. Higher fibroplasia was noticed on days 7 and 14 as well as higher collagenesis on 21(st) in the CAM group in comparison to SL group. CAM group showed faster reepithelialization on 7(th) day than SL group, although similar in other days. In conclusion, chitosan-alginate membrane modulated the inflammatory phase, stimulated fibroplasia and collagenesis, accelerating wound healing process in rats.
Materials Science and Engineering: C | 2014
Cecilia Zorzi Bueno; Ana M.A. Dias; Hermínio C. de Sousa; Mara E.M. Braga; Ângela Maria Moraes
This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.
Journal of Biomaterials Applications | 2015
Márcia Zilioli Bellini; Carolina Caliari-Oliveira; Amanda Mizukami; Kamilla Swiech; Dimas Tadeu Covas; Eduardo A. Donadi; Pedro de Oliva-Neto; Ângela Maria Moraes
The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive.
Biologicals | 2009
Fabiana R. X. Batista; Ângela Maria Moraes; Heino Büntemeyer; Thomas Noll
The recombinant G glycoprotein from the surface of the rabies virus (RVGP) is a promising candidate as a rabies vaccine component and also for diagnostic purposes. In this study, RVGP production by transfected Drosophila melanogaster S2 cells cultivated in a serum-free medium (supplemented IPL-41 medium) was carried out. The effects of pH and pO(2) were evaluated in batch culture in parallel spinner flasks. The use of a pH equal to 6.3 and a pO(2) of 40% air saturation resulted in the highest RVGP content. These conditions were also used in fed-batch mode, yielding a RVGP content level of 98g/10(7) cells. The main nutrients consumed were glucose, glutamine, asparagine, serine and proline and the major metabolites produced were alanine and ammonia, according to the metabolism studies performed. Since RVGP is a transmembrane protein, two different methods for protein recovery were assessed and compared. Detergent-based cell disruption showed to be more effective than mechanical disruption with glass beads for glycoprotein recovery.
Journal of Biomedical Materials Research Part B | 2009
Neusa Margarida Paulo; Marcelo Seixo de Brito e Silva; Ângela Maria Moraes; Ana Paula Rodrigues; Liliana Borges de Menezes; Marina Pacheco Miguel; Flávia Gontijo de Lima; Aline de Morais Faria; Lívia Maria Lindoso Lima
The correction of wall abdominal defects often requires the use of implants such as polypropylene meshes. In spite of presenting good tissue acceptance, these biomaterials can migrate to adjacent viscera, promote enterocutaneos fistulas, tissue adherence and visceral erosions. In this work, the barrier effect of chitosan films associated with polypropylene meshes on adhesion formation experimentally induced in Wistar rats was evaluated. The animals were divided into two groups with 10 animals each. Animals in the CPP group were implanted with chitosan films associated with polypropylene meshes, whereas the ones in the PP group received only polypropylene meshes. After 8 days, the animals were submitted to euthanasia using CO(2) and a descriptive study focusing adhesion formation, visceral involvement with sutures and mesh peritonization was performed. Also, subimplanted material was collected for histopathology analysis. The results showed that the CPP group presented weak adhesions to the omentum over the stitch knots in eight animals. In all animals, the meshes were peritonized, not allowing their visualization after removing the chitosan films. In the PP group, six animals presented intestinal adhesions to the meshes and, in one of them, hepatic adhesion to the mesh was observed, besides omentum adhesion on more than 50% of the mesh area. The protective effect of chitosan films when sutured over polypropylene meshes, as well as no exacerbation of inflammation associated to the peritoneal lesions was statistically demonstrated. Therefore, chitosan films can indeed minimize the formation of peritoneal adhesions induced by polypropylene meshes in rats.
Materials Science and Engineering: C | 2016
Priscila Soares Costa Sacchetin; Rafaela Ferreira Setti; Paulo de Tarso Vieira e Rosa; Ângela Maria Moraes
The aim of this study was to produce PLA (poly(lactic acid)) and PCL (polycaprolactone) oral carriers through the precipitation of the polymer solutions using supercritical CO2 as an antisolvent for the controlled release of the hydrophobic model drug 17α-methyltestosterone (MT). Such drug is a steroidal hormone used orally to develop and sustain primary and secondary male sex characteristics, e.g. for female Nile tilapia sex reversal in aquaculture. The influence of hormone, PLA and PCL concentrations on particle formation was analyzed, showing that high PCL concentrations produced particles with rougher surfaces and greater mean diameters. The incorporation efficiency of MT ranged from 20 to 51%, and its addition resulted in increases in particle mean diameter from 23 to 54 μm. Aggregation was observed for particles incorporating or not MT and high concentrations of MT led to the formation of more amorphous structures, changing the thermal behavior of the particles. The exposure of the PLA/PCL particles to pH conditions simulating gastrointestinal fish conditions showed that hormone release fraction at acidic pH ranged from 8 to 63% (over 2h), while in the basic pH the proportion released varied from 23 to 60% (over 10h), reaching levels adequate for the desired in vivo activity.
Química Nova | 2015
Ana Luiza Resende Pires; Andréa Cristiane Krause Bierhalz; Ângela Maria Moraes
The types of compounds used in the production of biomaterials, namely metals, ceramics, synthetic and natural polymers, as well as composite materials, are discussed in the present work, together with details of their application and evolution from biocompatible to bioactive, biodegradable, and biomimetic clinical products. The chemical structure, the three-dimensional structure, and the molecular organization of compounds frequently used in the manufacture of relevant classes of biomaterials are discussed, along with their advantages and some of their major limitations in specific clinical applications. The main chemical, physical, mechanical, and biological requirements of biomaterials categories are presented, as well as typical tissular responses to implanted biomaterials. Reasons for the recent economic growth of the biomaterials market segment are addressed, and the most successful biomaterial categories are discussed, emphasizing areas such as orthopedic and cardiovascular implants, regenerative medicine, tissue engineering, and controlled drug release devices. Finally, the need for the development of innovative and more accessible biomaterials, due to the expected increase in the number of elderly people and the growing trend of personalized medical procedures, is pointed out.
Journal of Industrial Microbiology & Biotechnology | 2012
Eliane G. Lucchesi; Sílvia Y. Eguchi; Ângela Maria Moraes
Although biofilms are often associated with hospital infection problems owing to their high resistance to antimicrobial agents, in recent years biofilms have also been studied in the industrial sector, mainly because they are a major cause of contamination outbreaks in facilities and products. The aim of this study was to investigate whether different materials commonly found in the metalworking industries have different biofilm formation characteristics when in contact with contaminated cutting fluid as well as to establish an optimal concentration of a triazine-based antimicrobial agent to protect the oil/water emulsion and also to delay or interrupt the development of biofilms. Biofilms grown on the surface of carbon steel, stainless steel, aluminum, polyvinyl chloride, and glass were analyzed in terms of cell growth and susceptibility to the tested biocide. The results showed that the type of material used had little influence on cell adhesion or on the microbicide concentration required to control and eradicate microorganisms suspended in the emulsion and in the biofilms.