Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela McCann is active.

Publication


Featured researches published by Angela McCann.


Genome Research | 2013

A genomic portrait of the emergence, evolution and global spread of a methicillin resistant Staphylococcus aureus pandemic

Matt T. G. Holden; L-Y. Hsu; Kevin Kurt; L.A. Weinert; Alison E. Mather; Simon R. Harris; Birgit Strommenger; Franziska Layer; Wolfgang Witte; H. de Lencastre; Robert Skov; Henrik Westh; Helena Zemlickova; Geoffrey W. Coombs; Angela M. Kearns; Robert Hill; Jonathan D. Edgeworth; Ian M. Gould; V. Gant; J. Cooke; Giles Edwards; Paul R. McAdam; K. Templeton; Angela McCann; Zhemin Zhou; Santiago Castillo-Ramírez; Edward J. Feil; L.O. Hudson; Mark C. Enright; Francois Balloux

The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.


Nature Communications | 2015

Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

Zhihong Sun; Hugh M. B. Harris; Angela McCann; Chenyi Guo; Silvia Argimón; Wenyi Zhang; Xianwei Yang; Ian B. Jeffery; Jakki C. Cooney; Todd F. Kagawa; Wenjun Liu; Yuqin Song; Elisa Salvetti; Agnieszka Wrobel; Pia Rasinkangas; Julian Parkhill; Mary C. Rea; Orla O'Sullivan; Jarmo Ritari; François P. Douillard; R. Paul Ross; Ruifu Yang; Alexandra E. Briner; Giovanna E. Felis; Willem M. de Vos; Rodolphe Barrangou; Todd R. Klaenhammer; Page W. Caufield; Yujun Cui; Heping Zhang

Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.


PLOS Genetics | 2013

Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella enterica Serovar Agona

Zhemin Zhou; Angela McCann; Eva Litrup; Ronan R. Murphy; Martin Cormican; Séamus Fanning; Derek J. Brown; David S. Guttman; Sylvain Brisse; Mark Achtman

Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever

Zhemin Zhou; Angela McCann; François-Xavier Weill; Camille Blin; Satheesh Nair; John Wain; Gordon Dougan; Mark Achtman

Significance The most recent common ancestor of Paratyphi A, one of the most common causes of enteric fever, existed approximately 450 y ago, centuries before that disease was clinically recognized. Subsequent changes in the genomic sequences included multiple mutations and acquisitions or losses of genes, including bacteriophages and genomic islands. Some of those evolutionary changes were reliably attributed to Darwinian selection, but that selection was only transient, and many genetic changes were subsequently lost because they rendered the bacteria less fit (purifying selection). We interpret the history of Paratyphi A as reflecting drift rather than progressive evolution and suggest that most recent increases in frequencies of bacterial diseases are due to environmental changes rather than the novel evolution of pathogenic bacteria. Multiple epidemic diseases have been designated as emerging or reemerging because the numbers of clinical cases have increased. Emerging diseases are often suspected to be driven by increased virulence or fitness, possibly associated with the gain of novel genes or mutations. However, the time period over which humans have been afflicted by such diseases is only known for very few bacterial pathogens, and the evidence for recently increased virulence or fitness is scanty. Has Darwinian (diversifying) selection at the genomic level recently driven microevolution within bacterial pathogens of humans? Salmonella enterica serovar Paratyphi A is a major cause of enteric fever, with a microbiological history dating to 1898. We identified seven modern lineages among 149 genomes on the basis of 4,584 SNPs in the core genome and estimated that Paratyphi A originated 450 y ago. During that time period, the effective population size has undergone expansion, reduction, and recent expansion. Mutations, some of which inactivate genes, have occurred continuously over the history of Paratyphi A, as has the gain or loss of accessory genes. We also identified 273 mutations that were under Darwinian selection. However, most genetic changes are transient, continuously being removed by purifying selection, and the genome of Paratyphi A has not changed dramatically over centuries. We conclude that Darwinian selection is not responsible for increased frequency of enteric fever and suggest that environmental changes may be more important for the frequency of disease.


PLOS Genetics | 2015

The role of China in the global spread of the current cholera pandemic

Xavier Didelot; Bo Pang; Zhemin Zhou; Angela McCann; Peixiang Ni; Dongfang Li; Mark Achtman; Biao Kan

Epidemics and pandemics of cholera, a severe diarrheal disease, have occurred since the early 19th century and waves of epidemic disease continue today. Cholera epidemics are caused by individual, genetically monomorphic lineages of Vibrio cholerae: the ongoing seventh pandemic, which has spread globally since 1961, is associated with lineage L2 of biotype El Tor. Previous genomic studies of the epidemiology of the seventh pandemic identified three successive sub-lineages within L2, designated waves 1 to 3, which spread globally from the Bay of Bengal on multiple occasions. However, these studies did not include samples from China, which also experienced multiple epidemics of cholera in recent decades. We sequenced the genomes of 71 strains isolated in China between 1961 and 2010, as well as eight from other sources, and compared them with 181 published genomes. The results indicated that outbreaks in China between 1960 and 1990 were associated with wave 1 whereas later outbreaks were associated with wave 2. However, the previously defined waves overlapped temporally, and are an inadequate representation of the shape of the global genealogy. We therefore suggest replacing them by a series of tightly delineated clades. Between 1960 and 1990 multiple such clades were imported into China, underwent further microevolution there and then spread to other countries. China was thus both a sink and source during the pandemic spread of V. cholerae, and needs to be included in reconstructions of the global patterns of spread of cholera.


PLOS ONE | 2013

Archaea Appear to Dominate the Microbiome of Inflatella pellicula Deep Sea Sponges

Stephen A. Jackson; Burkhardt Flemer; Angela McCann; Jonathan Kennedy; John P. Morrissey; Fergal O’Gara; Alan D. W. Dobson

Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ∼60% and ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising ∼88% and ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (∼0.2% and ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.


The ISME Journal | 2017

Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome

Guillaume Borrel; Angela McCann; Jennifer Deane; Marta C Neto; Denise B. Lynch; Jean François Brugère; Paul W. O'Toole

The biological significance of Archaea in the human gut microbiota is largely unclear. We recently reported genomic and biochemical analyses of the Methanomassiliicoccales, a novel order of methanogenic Archaea dwelling in soil and the animal digestive tract. We now show that these Methanomassiliicoccales are present in published microbiome data sets from eight countries. They are represented by five Operational Taxonomic Units present in at least four cohorts and phylogenetically distributed into two clades. Genes for utilizing trimethylamine (TMA), a bacterial precursor to an atherosclerogenic human metabolite, were present in four of the six novel Methanomassiliicoccales genomes assembled from ELDERMET metagenomes. In addition to increased microbiota TMA production capacity in long-term residential care subjects, abundance of TMA-utilizing Methanomassiliicoccales correlated positively with bacterial gene count for TMA production and negatively with fecal TMA concentrations. The two large Methanomassiliicoccales clades have opposite correlations with host health status in the ELDERMET cohort and putative distinct genomic signatures for gut adaptation.


Applied and Environmental Microbiology | 2015

Detection and Genomic Characterization of Motility in Lactobacillus curvatus: Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade

Fabien J. Cousin; Shónagh M. Lynch; Hugh M. B. Harris; Angela McCann; Denise B. Lynch; B. Anne Neville; Tomohiro Irisawa; Sanae Okada; Akihito Endo; Paul W. O'Toole

ABSTRACT Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC 0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15°C and 37°C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus in the L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.


PeerJ | 2018

Viromes of one year old infants reveal the impact of birth mode on microbiome diversity

Angela McCann; Feargal J. Ryan; Stephen R. Stockdale; Marion Dalmasso; Tony Blake; C. Anthony Ryan; Catherine Stanton; Susan Mills; Paul Ross; Colin Hill

Establishing a diverse gut microbiota after birth is being increasingly recognised as important for preventing illnesses later in life. It is well established that bacterial diversity rapidly increases post-partum; however, few studies have examined the infant gut virome/phageome during this developmental period. We performed a metagenomic analysis of 20 infant faecal viromes at one year of age to determine whether spontaneous vaginal delivery (SVD) or caesarean section (CS) influenced viral composition. We find that birth mode results in distinctly different viral communities, with SVD infants having greater viral and bacteriophage diversity. We demonstrate that CrAssphage is acquired early in life, both in this cohort and two others, although no difference in birth mode is detected. A previous study has shown that bacterial OTU’s (operational taxonomic units) identified in the same infants could not discriminate between birth mode at 12 months of age. Therefore, our results indicate that vertical transmission of viral communities from mother to child may play a role in shaping the early life microbiome, and that birth mode should be considered when studying the early life gut virome.


Microbial Genomics | 2017

A long and abundant non-coding RNA in Lactobacillus salivarius

Fabien J. Cousin; Denise B. Lynch; Victoria Chuat; Maxence J. B. Bourin; Pat G. Casey; Marion Dalmasso; Hugh M. B. Harris; Angela McCann; Paul W. O’Toole

Lactobacillus salivarius, found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L . salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.

Collaboration


Dive into the Angela McCann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Hill

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Ross

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge