Angela Pickl-Herk
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela Pickl-Herk.
PLOS Pathogens | 2012
Damià Garriga; Angela Pickl-Herk; Daniel Luque; Jürgen Wruss; José R. Castón; Dieter Blaas; Núria Verdaguer
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process.
Journal of Virology | 2010
Abdul Ghafoor Khan; Angela Pickl-Herk; Leszek Gajdzik; Thomas C. Marlovits; Renate Fuchs; Dieter Blaas
ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) mediates binding and entry of major group human rhinoviruses (HRVs). Whereas the entry pathway of minor group HRVs has been studied in detail and is comparatively well understood, the pathway taken by major group HRVs is largely unknown. Use of immunofluorescence microscopy, colocalization with specific endocytic markers, dominant negative mutants, and pharmacological inhibitors allowed us to demonstrate that the major group virus HRV14 enters rhabdomyosarcoma cells transfected to express human ICAM-1 in a clathrin-, caveolin-, and flotillin-independent manner. Electron microscopy revealed that many virions accumulated in long tubular structures, easily distinguishable from clathrin-coated pits and caveolae. Virus entry was strongly sensitive to the Na+/H+ ion exchange inhibitor amiloride and moderately sensitive to cytochalasin D. Thus, cellular uptake of HRV14 occurs via a pathway exhibiting some, but not all, characteristics of macropinocytosis and is similar to that recently described for adenovirus 3 entry via αv integrin/CD46 in HeLa cells.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Angela Pickl-Herk; Daniel Luque; Laia Vives-Adrián; Jordi Querol-Audí; Damià Garriga; Benes L. Trus; Núria Verdaguer; Dieter Blaas; José R. Castón
Significance Human rhinoviruses (HRVs) cause the common cold and exacerbate chronic pulmonary diseases. Their single-stranded RNA genome is protected by an icosahedral capsid and must be released into the host cell cytosol for translation and replication. Using X-ray and cryo-EM analyses, we identified structural alterations that take place in the virus architecture during infection. In acidic endosomes in vivo and in our experimental conditions, the native virion is converted into the expanded, porous uncoating intermediate A-particle. This is accompanied by altered RNA–protein contacts at the inner capsid wall, leading to major changes in RNA conformation that result in a well-organized RNA layer. These rearrangements suggest that the RNA–protein interactions prepare RNA and facilitate its subsequent egress via a well-ordered mechanism. During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA–protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp38 of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress.
Journal of Virology | 2011
Gerhard Bilek; Nena M. Matscheko; Angela Pickl-Herk; Victor U. Weiss; Xavier Subirats; Ernst Kenndler; Dieter Blaas
ABSTRACT After uptake into target cells, many nonenveloped viruses undergo conformational changes in the low-pH environment of the endocytic compartment. This results in exposure of amphipathic viral peptides and/or hydrophobic protein domains that are inserted into and either disrupt or perforate the vesicular membranes. The viral nucleic acids thereby gain access to the cytosol and initiate replication. We here demonstrate the in vitro transfer of the single-stranded positive-sense RNA genome of human rhinovirus 2 into liposomes decorated with recombinant very-low-density lipoprotein receptor fragments. Membrane-attached virions were exposed to pH 5.4, mimicking the in vivo pH environment of late endosomes. This triggered the release of the RNA whose arrival in the liposomal lumen was detected via in situ cDNA synthesis by encapsulated reverse transcriptase. Subsequently, cDNA was PCR amplified. At a low ratio between virions and lipids, RNA transfer was positively correlated with virus concentration. However, membranes became leaky at higher virus concentrations, which resulted in decreased cDNA synthesis. In accordance with earlier in vivo data, the RNA passes through the lipid membrane without causing gross damage to vesicles at physiologically relevant virus concentrations.
Virology | 2011
Abdul Ghafoor Khan; Angela Pickl-Herk; Leszek Gajdzik; Thomas C. Marlovits; Renate Fuchs; Dieter Blaas
The major group human rhinovirus type 8 can enter cells via heparan sulphate. When internalized into ICAM-1 negative rhabdomyosarcoma (RD) cells, HRV8 accumulated in the cells but caused CPE only after 3 days when used at high MOI. Adaptation by three blind passages alternating between RD and HeLa cells resulted in variant HRV8v with decreased stability at acidic pH allowing for productive infection in the absence of ICAM-1. HRV8v produced CPE at 10 times lower MOI within 1 day. Confocal fluorescence microscopy colocalization and the use of pharmacological and dominant negative inhibitors revealed that viral uptake is clathrin, caveolin, and flotillin independent. However, it is blocked by dynasore, amiloride, and EIPA. Furthermore, HRV8v induced FITC-dextran uptake and colocalized with this fluid phase marker. Except for the complete inhibition by dynasore, the entry pathway of HRV8v via HS is similar to that of HRV14 in RD cells that overexpress ICAM-1.
Electrophoresis | 2009
Victor U. Weiss; Gerhard Bilek; Angela Pickl-Herk; Dieter Blaas; Ernst Kenndler
Electrophoresis on a chip increasingly replaces electrophoresis in the capillary format because of its speed and containment of the sample within a disposable cartridge. In this paper we demonstrate its utility in the analysis of the interaction between a virus and a liposome‐anchored receptor, mimicking viral attachment to host cells. This became possible because detergents, obligatory constituents of the BGE for capillary electrophoretic separation of the virus, were not necessary in the chip format. Separations were carried out in sodium borate buffer, pH 8.3. Liposomes and virus were both labeled for laser‐induced fluorescence detection at λex/λem 630/680 nm. Free virus and virus‐receptor complexes were resolved from virus attached to receptor‐decorated liposomes in the absence of additives or sieving matrices within about 30 s on commercially available microfluidic chips.
Electrophoresis | 2012
Victor U. Weiss; Xavier Subirats; Angela Pickl-Herk; Gerhard Bilek; Wolfgang Winkler; Mohit Kumar; Günter Allmaier; Dieter Blaas; Ernst Kenndler
During infection, enteroviruses, such as human rhinoviruses (HRVs), convert from the native, infective form with a sedimentation coefficient of 150S to empty subviral particles sedimenting at 80S (B particles). B particles lack viral capsid protein 4 (VP4) and the single‐stranded RNA genome. On the way to this end stage, a metastable intermediate particle is observed in the cell early after infection. This subviral A particle still contains the RNA but lacks VP4 and sediments at 135S. Native (150S) HRV serotype 2 (HRV2) as well as its empty (80S) capsid have been well characterized by capillary electrophoresis. In the present paper, we demonstrate separation of at least two forms of subviral A particles on the midway between native virions and empty 80S capsids by CE. For one of these intermediates, we established a reproducible way for its preparation and characterized this particle in terms of its electrophoretic mobility and its appearance in transmission electron microscopy (TEM). Furthermore, the conversion of this intermediate to 80S particles was investigated. Gas‐phase electrophoretic mobility molecular analysis (GEMMA) yielded additional insights into sample composition. More data on particle characterization including its protein composition and RNA content (for unambiguous identification of the detected intermediate as subviral A particle) will be presented in the second part of the publication.
Journal of Virology | 2009
Tuende Konecsni; Ursula Berka; Angela Pickl-Herk; Gerhard Bilek; Abdul Ghafoor Khan; Leszek Gajdzig; Renate Fuchs; Dieter Blaas
ABSTRACT Minor group human rhinoviruses (HRVs) bind three members of the low-density lipoprotein receptor (LDLR) family: LDLR proper, very-LDLR (VLDLR) and LDLR-related protein (LRP). Whereas ICAM-1, the receptor of major group HRVs actively contributes to viral uncoating, LDLRs are rather considered passive vehicles for cargo delivery to the low-pH environment of endosomes. Since the Tyr-Trp-Thr-Asp β-propeller domain of LDLR has been shown to be involved in the dissociation of bound LDL via intramolecular competition at low pH, we studied whether it also plays a role in HRV infection. Human cell lines deficient in LDLR family proteins are not available. Therefore, we used CHO-ldla7 cells that lack endogenous LDLR. These were stably transfected to express either wild-type (wt) human LDLR or a mutant with a deletion of the β-propeller. When HRV2 was attached to the propeller-negative LDLR, a lower pH was required for conversion to subviral particles than when attached to wt LDLR. This indicates that high-avidity receptor binding maintains the virus in its native conformation. HRV2 internalization directed the mutant LDLR but not wt LDLR to lysosomes, resulting in reduced plasma membrane expression of propeller-negative LDLR. Infection assays using a CHO-adapted HRV2 variant showed a delay in intracellular viral conversion and de novo viral synthesis in cells expressing the truncated LDLR. Our data indicate that the β-propeller attenuates the virus-stabilizing effect of LDLR binding and thereby facilitates RNA release from endosomes, resulting in the enhancement of infection. This is a nice example of a virus exploiting high-avidity multimodule receptor binding with an intrinsic release mechanism.
Electrophoresis | 2009
Gerhard Bilek; Victor U. Weiss; Angela Pickl-Herk; Dieter Blaas; Ernst Kenndler
In first attempts at elucidating the transfer of the RNA genome of a human Rhinovirus through lipid membranes in vitro we made use of liposomes decorated with recombinant receptors. This model system was characterized previously by CE but suffered from the requirement for inclusion of polyethylene glycol‐modified lipids for reliable separations [Weiss, V. U., Bilek, G., Pickl‐Herk, A., Blaas, D., Kenndler, E., Electrophoresis 2009, 30, 2123–2128.]. We here report the analysis of liposomes with a lipid composition much more similar to that of biological lipid bilayers. We found that vesicles containing and lacking this non‐physiologic lipid differ significantly in their electrophoretic mobility (by factor 2) although the concentration of charge‐bearing lipids in their bilayers is the same. We demonstrate that binding of a human Rhinovirus to the latter liposomes decorated with a cognate receptor can be analysed via electrophoresis on microchips; we support our results with transmission electron microscopy.
Analytical Chemistry | 2010
Victor U. Weiss; Gerhard Bilek; Angela Pickl-Herk; Xavier Subirats; Katarzyna Niespodziana; Rudolf Valenta; Dieter Blaas; Ernst Kenndler
Permeabilization of model lipid membranes by virus-derived peptides, viral proteins, and entire virions of human rhinovirus was assessed by quantifying the release of a fluorescent dye from liposomes via a novel chip electrophoretic assay. Liposomal leakage readily occurred upon incubation with the pH-sensitive synthetic fusogenic peptide GALA and, less efficiently, with a 24mer peptide (P1-N) derived from the N-terminus of the capsid protein VP1 of human rhinovirus 2 (HRV2) at acidic pH. Negative stain transmission electron microscopy showed that liposomes incubated with the rhinovirus-derived peptide remained largely intact. At similar concentrations, the GALA peptide caused gross morphological changes of the liposomes. On a molar basis, the leakage-inducing efficiency of the P1 peptide was by about 2 orders of magnitude inferior to that of recombinant VP1 (from HRV89) and entire HRV2. This underscores the role in membrane destabilization of VP1 domains remote from the N-terminus and the arrangement of the peptide in the context of the icosahedral virion. Our method is rapid, requires tiny amounts of sample, and allows for the parallel determination of released and retained liposomal cargo.