Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Pinot de Moira is active.

Publication


Featured researches published by Angela Pinot de Moira.


PLOS Neglected Tropical Diseases | 2010

Analysis of Complex Patterns of Human Exposure and Immunity to Schistosomiasis mansoni: The Influence of Age, Sex, Ethnicity and IgE

Angela Pinot de Moira; A. J. C. Fulford; Narcis B. Kabatereine; John H. Ouma; Mark Booth; David W. Dunne

Background Numerous factors may influence Schistosoma infection intensity and prevalence within endemic communities, including exposure-related factors such as local environment and behaviour, and factors relating to susceptibility to infection such as immunology and genetics. While animal studies performed in the laboratory can be tightly controlled, human populations are highly heterogeneous, varying according to demographic characteristics, genetic background and exposure to infection. The heterogeneous nature of human water contact behaviour in particular makes it difficult to distinguish between a lack of cercarial exposure and reduced susceptibility to infection as the cause for low levels of infection in the field. Methods and Principal Findings In this study we investigate risk factors for Schistosoma mansoni infection in a rural Ugandan fishing community receiving treatment as part of a multi-disciplinary longitudinal reinfection study. More specifically, we examine the influence that age, sex and ethnic background have on susceptibility to reinfection after anti-helminth drug treatment, but use individual estimates of cercarial exposure and multivariable methods in an attempt to remove noise created by environmental and behavioural heterogeneities. We then investigate whether schistosome-specific IgE immune responses could account for any remaining variations in susceptibility to reinfection. Our findings suggest that observed ethnic- and sex-related variations in S. mansoni reinfection were due to variations in cercarial exposure, as opposed to biological differences in susceptibility to infection. Age-related differences in reinfection were not explained by exposure, however, and appeared linked to the balance of IgE and IgG4 to the tegumental antigen SmTAL1 (formerly Sm22.6), which itself was significantly related to resistance to reinfection. Conclusions This study highlights the benefit of taking a multidisciplinary approach in complex field settings; it allows the ecology of a population to be understood and thus more robust conclusions to be made.


Parasites & Vectors | 2012

Epidemiology and control of human schistosomiasis in Tanzania

Humphrey D. Mazigo; Fred Nuwaha; Safari M. Kinung’hi; Domenica Morona; Angela Pinot de Moira; Shona Wilson; Jorg Heukelbach; David W. Dunne

In Tanzania, the first cases of schistosomiasis were reported in the early 19th century. Since then, various studies have reported prevalences of up to 100% in some areas. However, for many years, there have been no sustainable control programmes and systematic data from observational and control studies are very limited in the public domain. To cover that gap, the present article reviews the epidemiology, malacology, morbidity, and the milestones the country has made in efforts to control schistosomiasis and discusses future control approaches. The available evidence indicates that, both urinary and intestinal schistosomiasis are still highly endemic in Tanzania and cause significant morbidity.Mass drug administration using praziquantel, currently used as a key intervention measure, has not been successful in decreasing prevalence of infection. There is therefore an urgent need to revise the current approach for the successful control of the disease. Clearly, these need to be integrated control measures.


PLOS Neglected Tropical Diseases | 2012

Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray.

Angela van Diepen; Cornelis H. Smit; Loes van Egmond; Narcis B. Kabatereine; Angela Pinot de Moira; David W. Dunne; Cornelis H. Hokke

Background Schistosomiasis (bilharzia) is a chronic and potentially deadly parasitic disease that affects millions of people in (sub)tropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown. Methodology/Principal Findings The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection. Conclusions/Significance Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further exploration of Schistosoma glycan antigens in relation to immunity.


Tropical Medicine & International Health | 2007

Microgeographical and tribal variations in water contact and Schistosoma mansoni exposure within a Ugandan fishing community

Angela Pinot de Moira; A. J. C. Fulford; Narcis B. Kabatereine; Francis Kazibwe; John H. Ouma; David W. Dunne; Mark Booth

Objective  To explore patterns of water contact and Schistosoma mansoni exposure by age, sex, tribe and space within a single village.


Infection and Immunity | 2012

Progressive Cross-Reactivity in IgE Responses: an Explanation for the Slow Development of Human Immunity to Schistosomiasis?

Colin M. Fitzsimmons; Frances M. Jones; Angela Pinot de Moira; Anna V. Protasio; Jamal Khalife; Harriet A. Dickinson; Edridah M. Tukahebwa; David W. Dunne

ABSTRACT People in regions of Schistosoma mansoni endemicity slowly acquire immunity, but why this takes years to develop is still not clear. It has been associated with increases in parasite-specific IgE, induced, some investigators propose, to antigens exposed during the death of adult worms. These antigens include members of the tegumental-allergen-like protein family (TAL1 to TAL13). Previously, in a group of S. mansoni-infected Ugandan males, we showed that IgE responses to three TALs expressed in worms (TAL1, -3, and -5) became more prevalent with age. Now, in a subcohort we examined associations of these responses with resistance to reinfection and use the data to propose a mechanism for the slow development of immunity. IgE was measured 9 weeks posttreatment and at reinfection at 2 years (n = 144). An anti-TAL5 IgE (herein referred to as TAL5 IgE) response was associated with reduced reinfection even after adjusting for age using regression analysis (geometric mean odds ratio, 0.24; P = 0.016). TAL5 IgE responders were a subset of TAL3 IgE responders, themselves a subset of TAL1 responders. TAL3 IgE and TAL5 IgE were highly cross-reactive, with TAL3 the immunizing antigen and TAL5 the cross-reactive antigen. Transcriptional and translational studies show that TAL3 is most abundant in adult worms and that TAL5 is most abundant in infectious larvae. We propose that in chronic schistosomiasis, older individuals have repeatedly experienced IgE antigens exposed when adult worms die (e.g., TAL3) and that this leads to increasing cross-reactivity with antigens of invading larvae (e.g., TAL5). Progressive accumulation of worm/larvae cross-reactivity could explain the age-dependent immunity observed in areas of endemicity.


Infection and Immunity | 2013

Effects of Treatment on IgE Responses against Parasite Allergen-Like Proteins and Immunity to Reinfection in Childhood Schistosome and Hookworm Coinfections

Angela Pinot de Moira; Frances M. Jones; Shona Wilson; Edridah M. Tukahebwa; Colin M. Fitzsimmons; Joseph K. Mwatha; Jeffrey M. Bethony; Narcis B. Kabatereine; David W. Dunne

ABSTRACT Naturally occurring human immunity to both schistosomiasis and hookworm infection has been associated with IgE responses against parasite allergen-like proteins. Since the two helminths frequently coinfect the same individuals, there is growing advocacy for their concurrent treatment. However, both helminths are known to exert strong immunomodulatory effects; therefore, coinfected individuals could have immune responses different from those characteristically seen in monoinfected individuals. In this study, we measured changes in IgE, IgG1, and IgG4 responses to schistosome and hookworm antigens, including the allergen-like proteins Schistosoma mansoni tegumental-allergen-like 1 protein (SmTAL1), SmTAL2, and Necator americanus Ancylostoma-secreted protein-2 (Na-ASP-2), following concurrent treatment of schoolchildren coinfected with Schistosoma mansoni and hookworm. Antibody responses to schistosome egg (soluble egg antigen and SmTAL2) or somatic adult hookworm (AHW) antigens either decreased after treatment or were unchanged, whereas those to schistosome worm antigens (soluble worm antigen and SmTAL1) increased. The observed different effects of treatment likely reflect the different modes of drug action and sites of infection for these two helminths. Importantly, there was no evidence that the simultaneous treatment of coinfected children with praziquantel and albendazole affected schistosome- and hookworm-specific humoral responses differently from those characteristic of populations in which only one organism is endemic; schistosome- and hookworm-specific responses were not associated, and there was no evidence for cross-regulation. Posttreatment increases in the levels of IgE to schistosome worm antigens were associated with lower Schistosoma mansoni reinfection intensity, while no associations between humoral responses to AHW antigen and protection from hookworm reinfection were observed in this sample of school-aged children.


Frontiers in Immunology | 2015

Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection

Edward J. Farnell; Nidhi Tyagi; Stephanie Ryan; Iain W. Chalmers; Angela Pinot de Moira; Frances M. Jones; Jakub Wawrzyniak; Colin M. Fitzsimmons; Edridah M. Tukahebwa; Nicholas Furnham; Rick M. Maizels; David W. Dunne

The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our hypothesis that allergenicity is rooted in expression of certain protein domain families in metazoan parasites.


The Journal of Infectious Diseases | 2014

Suppression of Basophil Histamine Release and Other IgE-dependent Responses in Childhood Schistosoma mansoni/hookworm Coinfection

Angela Pinot de Moira; Colin M. Fitzsimmons; Frances M. Jones; Shona Wilson; Pierre Cahen; Edridah M. Tukahebwa; Harriet Mpairwe; Joseph K. Mwatha; Jeffrey M. Bethony; Per Stahl Skov; Narcis B. Kabatereine; David W. Dunne

Background. The poor correlation between allergen-specific immunoglobulin E (asIgE) and clinical signs of allergy in helminth infected populations suggests that helminth infections could protect against allergy by uncoupling asIgE from its effector mechanisms. We investigated this hypothesis in Ugandan schoolchildren coinfected with Schistosoma mansoni and hookworm. Methods. Skin prick test (SPT) sensitivity to house dust mite allergen (HDM) and current wheeze were assessed pre-anthelmintic treatment. Nonspecific (anti-IgE), helminth-specific, and HDM-allergen-specific basophil histamine release (HR), plus helminth- and HDM-specific IgE and IgG4 responses were measured pre- and post-treatment. Results. Nonspecific- and helminth-specific-HR, and associations between helminth-specific IgE and helminth-specific HR increased post-treatment. Hookworm infection appeared to modify the relationship between circulating levels of HDM-IgE and HR: a significant positive association was observed among children without detectable hookworm infection, but no association was observed among infected children. In addition, hookworm infection was associated with a significantly reduced risk of wheeze, and IgG4 to somatic adult hookworm antigen with a reduced risk of HDM-SPT sensitivity. There was no evidence for S. mansoni infection having a similar suppressive effect on HDM-HR or symptoms of allergy. Conclusions. Basophil responsiveness appears suppressed during chronic helminth infection; at least in hookworm infection, this suppression may protect against allergy.


International Journal for Parasitology | 2014

Human IgE responses to different splice variants of Schistosoma mansoni tropomyosin: associations with immunity

Sukrit Silas; Colin M. Fitzsimmons; Frances M. Jones; Angela Pinot de Moira; Jakub Wawrzyniak; Edridah M. Tukahebwa; David W. Dunne

Graphical abstract


Parasites & Vectors | 2014

Co-infection with Schistosoma mansoni and Human Immunodeficiency Virus-1 (HIV-1) among residents of fishing villages of north-western Tanzania

Humphrey D Mazigo; David W. Dunne; Shona Wilson; Safari M. Kinung’hi; Angela Pinot de Moira; Frances M. Jones; Domenica Morona; Fred Nuwaha

BackgroundCo-infection with S. mansoni and Human Immunodeficiency Virus-1 (HIV-1) has been described in sub-Saharan Africa. However, few community-based studies have been conducted to assess the association between the two diseases. The present study examined whether the infection with HIV-1 is associated with an altered susceptibility to S. mansoni infection by comparing the prevalence and intensity of S. mansoni infection among those infected and not infected with HIV-1. Any influence of HIV-1 associated immunodeficiency on the intensity of S. mansoni infection was also investigated.MethodsA cross-sectional study was conducted among 1,785 randomly selected adults (aged 21–55 years) in fishing villages of north-western Tanzania. Single stool samples were obtained and examined for S. mansoni eggs using the Kato Katz technique. Finger prick and venous blood samples were collected for HIV-1 screening and CD4+ cell quantification. Demographic information was collected by questionnaire.ResultsOf the 1,785 individuals from whom complete data were obtained, 854 (47.85%, 95% CI; 40.46 – 56.57) were infected with S. mansoni and had a mean intensity of 183.21(95% CI; 165.61-202.70) eggs per gram of faeces (epg). A total of 125 individuals (6.29%, 95% CI 3.59-11.04) were infected with HIV-1 and only 40% (n=50) of them were co-infected with S. mansoni. No differences in prevalence of S. mansoni infection or intensities of infection, as estimated by egg count (epg), were observed between HIV-1 sero-positive individuals and HIV-1 negative individuals. In generalized regression models (adjusted for sex, age, occupation, residence and level of education), being infected with HIV-1 did not increase the risk (APR=1.01, 95%; 0.83-1.21, P=0.93) or intensity (AOR = 0.84, 95% CI; 0.56-1.25, P = 0.33) of S. mansoni infection. Among individuals co-infected with HIV-1 and S. mansoni infection, the intensity of infection (epg) was not associated (P = 0.21) or correlated (P = 0.13) with CD4+ cell counts.ConclusionOur findings suggest that HIV-1 infection may not have a major effect on S. mansoni infection or on the excretion of eggs from the co-infected individuals. However, further studies are needed to understand the biological interaction between HIV-1 and S. mansoni in a large cohort of co-infected individuals.

Collaboration


Dive into the Angela Pinot de Moira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shona Wilson

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Cahen

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge