Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Rampa is active.

Publication


Featured researches published by Angela Rampa.


Journal of Medicinal Chemistry | 2008

Benzofuran-Based Hybrid Compounds for the Inhibition of Cholinesterase Activity, β Amyloid Aggregation, and Aβ Neurotoxicity

Stefano Rizzo; Céline Rivière; Lorna Piazzi; Alessandra Bisi; Silvia Gobbi; Manuela Bartolini; Vincenza Andrisano; Fabiana Morroni; Andrea Tarozzi; Jean-Pierre Monti; Angela Rampa

The complex etiology of Alzheimers disease (AD) prompts scientists to develop multitarget strategies to combat causes and symptoms. We therefore designed, synthesized, and tested new hybrid molecules linking a benzofuran ring to a N-methyl- N-benzylamine through a heptyloxy chain, affording a series of potential multifunctional drugs for AD. The cholinesterase inhibitory activity was extended to the inhibition of Abeta fibril formation for 1, 3, and 5. Compound 3 showed an additional neuroprotective effect.


Bioorganic & Medicinal Chemistry | 2000

Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives.

Angela Rampa; Alessandra Bisi; Federica Belluti; Silvia Gobbi; Piero Valenti; Vincenza Andrisano; Vanni Cavrini; Andrea Cavalli; Maurizio Recanatini

Continuing our work on tetracyclic tacrine analogues, we synthesized a series of acetylcholinesterase (AChE) inhibitors of 11H-indeno-[1,2-b]-quinolin-10-ylaminic structure. Selected substituents were placed in synthetically accessible positions of the tetracyclic nucleus, in order to explore the structure-activity relationships (SAR) and the mode of action of this class of anticholinesterases. A molecular modeling investigation of the binding interaction of the lead compound (1a) with the AChE active site was performed, from which it resulted that, despite the rather wide and rigid structure of 1a, there may still be the possibility to introduce some small substituent in some positions of the tetracycle. However, from the examination of the experimental IC50 values, it derived that the indenoquinoline nucleus probably represents the maximum allowable molecular size for rigid compounds binding to AChE. In fact, only a fluorine atom in position 2 maintains the AChE inhibitory potency of the parent compound, and, actually, increases the AChE-selectivity with respect to the butyrylcholinesterase inhibition. By studying the kinetics of AChE inhibition for two representative compounds of the series, it resulted that the lead compound (1a) shows an inhibition of mixed type, binding to both the active and the peripheral sites, while the more sterically hindered analogue 2n seems to interact only at the external binding site of the enzyme. This finding seems particularly important in the context of Alzheimers disease research in the light of recent observations showing that peripheral AChE inhibitors might decrease the aggregating effects of the enzyme on the beta-amyloid peptide (betaA).


Bioorganic & Medicinal Chemistry | 2000

Synthesis and biological activity of some rigid analogues of flavone-8-acetic acid

Piero Valenti; Alessandra Bisi; Angela Rampa; Federica Belluti; Silvia Gobbi; Antonella Zampiron; Maria Carrara

Some rigid analogues of flavone-8-acetic acid are described. Direct in vitro toxicity of the synthesised compounds was evaluated towards four tumoral cell lines and the ability of these compounds to stimulate mouse peritoneal macrophages in culture to become tumoricidal (indirect toxicity) was also studied. All compounds were able to induce direct cytotoxicity only at very high concentrations but showed a remarkable indirect activity. In particular compound 4d was able to significantly increase macrophage lytic properties and has been selected for further investigations.


Bioorganic & Medicinal Chemistry | 2010

Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238

Stefano Rizzo; Manuela Bartolini; Luisa Ceccarini; Lorna Piazzi; Silvia Gobbi; Andrea Cavalli; Maurizio Recanatini; Vincenza Andrisano; Angela Rampa

We report on a series of hybrid compounds structurally derived from donepezil and AP2238. This study was aimed at improving the activities of the reference compounds, donepezil and AP2238, and at broadening the range of activities of new derivatives as, due to the multifactorial nature of AD, molecules that modulate the activity of a single protein target are unable to significantly modify the progression of the disease. In particular, the indanone core from donepezil was linked to the phenyl-N-methylbenzylamino moiety from AP2238, through a double bond that was kept to evaluate the role of a lower flexibility in the biological activities. Moreover, SAR studies were performed to evaluate the role of different substituents in position 5 or 6 of the indanone ring in the interaction with the PAS, introducing also alkyl chains of different lengths carrying different amines at one end. Derivatives 21 and 22 proved to be the most active within the series and their potencies against AChE were in the same order of magnitude of the reference compounds. Compounds 15, 21-22, with a 5-carbon alkyl chain bearing an amino moiety at one end, better contacting the PAS, remarkably improved the inhibition of AChE-induced Abeta aggregation with respect to the reference compounds. They also showed activity against self-aggregation of Abeta(42) peptide, the most amyloidogenic form of amyloid produced in AD brains, while the reference compounds resulted completely ineffective.


Current Medicinal Chemistry | 2013

Phytoestrogens in Postmenopause: The State of the Art from a Chemical, Pharmacological and Regulatory Perspective

Elisabetta Poluzzi; Carlo Piccinni; Emanuel Raschi; Angela Rampa; Maurizio Recanatini; Fabrizio De Ponti

Phytoestrogens represent a diverse group of non-steroidal natural products, which seem to have some oestrogenic effects and are often marketed as food supplements. Population exposed to phytoestrogens is potentially increasing, in part because an unfavourable risk-benefit profile of Hormone Replacement Therapy (HRT) for prolonged treatments (e.g., osteoporosis prevention) highlighted by the publication of the Women Health Initiative (WHI) trial in 2002, but also because many post-menopausal women often perceived phytoestrogens in food supplements as a safer alternative than HRT. Despite of increasing preclinical and clinical studies in the past decade, appealing evidence is still lacking to support the overall positive risk-benefit profile of phytoestrogens. Their status as food supplements seems to discourage studies to obtain new evidence, and the chance to buy them by user’s initiative make it difficult to survey their prevalence and pattern of use. The aim of the present review is to: (a) outline the clinical scenario underlying the increased interest on phytoestrogens, by overviewing the evolution of the evidence on HRT and its main therapeutic goals (e.g., menopausal symptoms relief, chemoprevention, osteoporosis prevention); (b) address the chemical and pharmacological features (e.g. chemical structure, botanical sources, mechanism of action) of the main compounds (e.g., isoflavones, lignans, coumestans); (c) describe the clinical evidence on potential therapeutic applications; (d) put available evidence on their riskbenefit profile in a regulatory perspective, in light of the recent regulation on health claims of food supplements.


Current Topics in Medicinal Chemistry | 2011

Hybrid-Based Multi-Target Ligands for the Treatment of Alzheimer's Disease

Angela Rampa; Federica Belluti; Silvia Gobbi; Alessandra Bisi

Progresses in medicinal chemistry over the last few years have focused on the design and synthesis of hybrid compounds, molecules encompassing in a single scaffold two pharmacophores from known entities endowed with well established biological activities. The interest in this topic is related to the increasing emphasis on the identification of the different factors involved in a number of disorders, such as the complex multifactorial Alzheimers disease (AD), and hybrid- based strategy has become a focal point in this medicinal chemistry field since it could lead to derivatives with an improved biological profile. Using this strategy, acetylcholinesterase inhibitors (AChEIs) have been extensively coupled with properly selected bioactive molecules to obtain homo- and heterodimers endowed with increased potency together with supplementary actions. In the past decade the inhibition of the AChE induced aggregation of the -amyloid peptide into the senile plaques, which is a key event in the neurotoxic cascade of AD, has been considered a relevant approach leading to several dual binding site inhibitors, able to contact both the peripheral anionic site of AChE and the active site. In recent years, pioneering efforts have been performed to obtain novel AChEIs that, beyond the capability to inhibit AChE, were able to hit a number of specific AD targets. In particular, these compounds proved to possess antioxidant, anti-inflammatory, or neuroprotective activities, useful to block or revert the progression of the disease. This review summarizes the progresses that have been made in the design of hybrid molecules for the treatment of AD.


Bioorganic & Medicinal Chemistry | 2008

Multidrug resistance reverting activity and antitumor profile of new phenothiazine derivatives

Alessandra Bisi; Maria Meli; Silvia Gobbi; Angela Rampa; Manlio Tolomeo; Luisa Dusonchet

A series of easily affordable phenothiazine derivatives bearing a rigid but-2-ynyl amino side chain were synthesized and tested to evaluate the MDR reverting activity and full antitumor profile. Some compounds endowed with remarkable MDR reverting effect were identified, and the most active one (6c) was shown to increase doxorubicin retention in multidrug resistant cells, suggesting a direct interaction with P-glycoprotein. Furthermore, a broad range of cellular activities were observed for different compounds. In particular, the ability of some derivatives to induce antiproliferative effects on resistant cell lines and to interfere with the G(1) phase of the cell cycle, a phase usually not affected by classical antitumor agents, was noted. Moreover, the most cytotoxic compounds of the series were able to induce apoptosis in resistant cell lines, via an atypical pathway of caspase cascade activation, and a synergistic effect in combination with doxorubicin was also found.


Journal of Medicinal Chemistry | 2010

Novel highly potent and selective nonsteroidal aromatase inhibitors: synthesis, biological evaluation and structure-activity relationships investigation.

Silvia Gobbi; Christina Zimmer; Federica Belluti; Angela Rampa; Rolf W. Hartmann; Maurizio Recanatini; Alessandra Bisi

In further pursuing our search for potent and selective aromatase inhibitors, a new series of molecules was designed and synthesized, exploring possible structural modifications of a previously identified xanthone scaffold. Among them, highly potent compounds, with inhibitory activity in the low nanomolar range, were found. In particular, substitution of the heterocyclic oxygen atom in the xanthone core by a sulfur atom and/or increase in structure flexibility seemed to be favorable for the interaction with the enzyme.


Expert Opinion on Therapeutic Patents | 2013

Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer's disease: a patent review (2010 - 2012).

Federica Belluti; Angela Rampa; Silvia Gobbi; Alessandra Bisi

Introduction: Genetic, physiological, and biochemical data indicate that agglomerates of the 42-amino acid form of the amyloid-β (Aβ42) peptide are strongly linked to Alzheimers disease (AD) etiology and thus represent a particularly attractive target for the development of an effective disease-modifying approach for AD treatment. A plethora of chemical entities able to modulate Aβ42 self-assembly have been developed in recent years, among them, several are in clinical or preclinical development. Areas covered: This review accounts for small-molecule inhibitors of Aβ peptide polymerization and toxicity, reported in the patent literature during the 2010 – 2012 period, and their potential use as disease-modifying therapeutics for AD cure. Expert opinion: The earliest pathogenic event is the formation of soluble Aβ oligomers that disrupt synaptic communication. Drug design strategies targeting these primary toxic agents could hold considerable promises for obtaining effective anti-AD drugs candidate. The heterogeneous aggregation of Aβ and the resulting difficulty to structurally characterize the peptide represent important drawbacks.


Journal of Medicinal Chemistry | 2013

Modulation of Cytochromes P450 with Xanthone-Based Molecules: From Aromatase to Aldosterone Synthase and Steroid 11β- Hydroxylase Inhibition

Silvia Gobbi; Qingzhong Hu; Matthias Negri; Christina Zimmer; Federica Belluti; Angela Rampa; Rolf W. Hartmann; Alessandra Bisi

Imidazolylmethylflavones previously reported by us as aromatase inhibitors proved to be able to interact with aldosterone synthase (CYP11B2), a cytochrome P450 enzyme involved in the biosynthesis of the mineralcorticoid hormone aldosterone, and were used to obtain a pharmacophore model for this enzyme. Here, in the search for potential ligands for CYP11B2 and the related CYP11B1, a virtual screening of a small compounds library of our earlier synthesized aromatase inhibitors was performed and, according to the results and the corresponding biological data, led to the design and synthesis of a series of xanthones derivatives carrying an imidazolylmethyl substituent in position 1 and different substituents in position 4. Some very potent inhibitors were obtained; in particular, the 4-chlorine derivative was active in the low nanomolar or subnanomolar range on CYP11B2 and CYP11B1, respectively, proving that xanthone can be considered as an excellent scaffold, whose activity can be directed to different targets when appropriately functionalized.

Collaboration


Dive into the Angela Rampa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge