Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Terezinha de Souza Wyse is active.

Publication


Featured researches published by Angela Terezinha de Souza Wyse.


Neurochemical Research | 2000

Preconditioning Prevents the Inhibition of Na+,K+-ATPase Activity after Brain Ischemia

Angela Terezinha de Souza Wyse; Emilio L. Streck; Paulo Valdeci Worm; André Wajner; Fabiana Gonçalves Ritter; Carlos Alexandre Netto

Application of single transient forebrain ischemia (ISC) in adult Wistar rats, lasting 2 or 10 min, caused inhibition of Na+,K+-ATPase activity in cytoplasmic membrane fractions of hippocampus and cerebral cortex immediately after the event. In the 2-min ISC group followed by 60 min of reperfusion, the enzyme inhibition was maintained in the cortex, while there was an increase in hippocampal enzyme activity; both effects were over 1 day after the event. However, in the 10-min ISC group enzyme inhibition had been maintained for 7 days in both cerebral structures. Interestingly, ischemic preconditioning (2-min plus 10-min ISC, with a 24-hour interval in between) prevented the inhibitory effect of ischemia/reperfusion on Na+,K+-ATPase activity observed either after a single insult of 2 min or 10 min ischemia. We suggest that the maintenance of Na+,K+-ATPase activity afforded by preconditioning be related to cellular neuroprotection.


Neurochemical Research | 2002

Inhibition of Na+,K+-ATPase Activity in Hippocampus of Rats Subjected to Acute Administration of Homocysteine Is Prevented by Vitamins E and C Treatment

Angela Terezinha de Souza Wyse; Alexandra I. Zugno; Emilio L. Streck; Cristiane Matté; Thiago Calcagnotto; Clovis Milton Duval Wannmacher; Moacir Wajner

In the present study we evaluated the effect of acute homocysteine (Hcy) administration on Na+,K+-ATPase activity, as well as on some parameters of oxidative stress such as total radical-trapping antioxidant potential (TRAP) and on activities of antioxidant enzymes catalase (CAT), superoxide dismutase and glutathione peroxidase in rat hippocampus. Results showed that Hcy significantly decreased TRAP, Na+,K+-ATPase and CAT activities, without affecting the activities of superoxide dismutase and glutathione peroxidase. We also verified the effect of chronic pretreatment with vitamins E and C on the reduction of TRAP, Na+,K+-ATPase and CAT activities caused by Hcy. Vitamins E and C per se did not alter these parameters, but prevented the reduction of TRAP, Na+,K+-ATPase and CAT activities caused by Hcy. Our results indicate that oxidative stress is probably involved in the pathogenesis of homocystinuria and that reduction of Na+,K+-ATPase activity may be related to the neuronal dysfunction found in homocystinuric patients.


Neuroreport | 2000

Methylmalonate administration decreases Na+,K+-ATPase activity in cerebral cortex of rats.

Angela Terezinha de Souza Wyse; Emilio L. Streck; Sonja Verginia Tamborena Barros; Ana Maria Brusque; Alexandra I. Zugno; Moacir Wajner

Buffered methylmalonate (MMA) was injected s.c. into rats twice a day at 8 h intervals from 5 to 25 days of age (chronic treatment), or into 10-day-old rats three times a day at 1 h intervals (acute treatment). Control rats received saline in the same volumes. Na+, K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from cerebral cortex of rats. Na+, K+-ATPase activity was reduced by 30–40% in MMA-treated rats, whereas Mg2+-ATPase activity was not. In contrast, MMA at final concentrations ranging from 0.1 to 2.0 mM had no in vitro effect on these enzyme activities. However, when brain homogenates were incubated with 2 mM MMA before membrane preparation, Na+, K+-ATPase activity was decreased by 44%. Furthermore, this reduction was totally prevented by the simultaneous addition of glutathione and MMA, suggesting that oxidation of thiol groups or other oxidative damage to the enzyme could be responsible for this effect.


Neurochemistry International | 2002

Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid

Ana Maria Brusque; R Borba Rosa; Patrícia Fernanda Schuck; Karina Borges Dalcin; César Augusto João Ribeiro; Cleide Goncalves da Silva; Clovis Milton Duval Wannmacher; Carlos Severo Dutra-Filho; Angela Terezinha de Souza Wyse; P Briones; Moacir Wajner

Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32-46%), complex I (61-72%), and complex II+III (15-26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1mM succinate in the assay instead of the usual 16mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11-27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.


Metabolic Brain Disease | 2003

In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus.

Emilio L. Streck; Paula Stein Vieira; Clovis Milton Duval Wannmacher; Carlos Severo Dutra-Filho; Moacir Wajner; Angela Terezinha de Souza Wyse

Homocystinuria is an inherited metabolic disease characterized biochemically by increased blood and brain levels of homocysteine caused by severe deficiency of cystathionine β-synthase activity. Affected patients present mental retardation, seizures, and atherosclerosis. Oxidative stress plays an important role in the pathogenesis of many neurodegenerative and vascular diseases, such Alzheimers disease, stroke, and atherosclerosis. However, the mechanisms underlying the neurological damage characteristic of homocystinuria are still poorly understood. To evaluate the involvement of oxidative stress on the neurological dysfunction present in homocystinuria, we measured thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation, and total radical-trapping antioxidant potential (TRAP) and antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase) in rat hippocampus in the absence (controls) or in the presence of homocysteine (10–500 μM) in vitro. We demonstrated that homocysteine significantly increases TBARS and decreases TRAP, both in a dose-dependent manner, but did not change antioxidant enzymes. Our results suggest that oxidative stress is involved in the neurological dysfunction of homocystinuria. However, further studies are necessary to confirm and extend our findings to the human condition and also to determine whether antioxidant therapy may be of benefit to these patients.


Neurochemical Research | 2002

Reduction of Na+,K+-ATPase Activity in Hippocampus of Rats Subjected to Chemically Induced Hyperhomocysteinemia

Emilio L. Streck; Cristiane Matté; Paula Stein Vieira; Fernanda Rombaldi; Clovis Milton Duval Wannmacher; Moacir Wajner; Angela Terezinha de Souza Wyse

Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 μM), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 μmol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na+,K+-ATPase activity but did not alter Mg2+-ATPase activity. Considering that Na+,K+-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na+,K+-ATPase activity.


Neurochemical Research | 2003

Reduction of Hippocampal Na+, K+-ATPase Activity in Rats Subjected to an Experimental Model of Depression

Giovana Duzzo Gamaro; Emilio L. Streck; Cristiane Matté; Martha Elisa Prediger; Angela Terezinha de Souza Wyse; Carla Dalmaz

The effect of a model of depression using female rats on Na+, K+-ATPase activity in hippocampal synaptic plasma membranes was studied. In addition, the effect of further chronic treatment with fluoxetine on this enzyme activity was verified. Sweet food consumption was measured to evaluate the efficacy of this model in inducing a state of reduced response to rewarding stimili. After 40 days of mild stress, a reduction in sweet food ingestion was observed. Reduction of hippocampal Na+, K+-ATPase activity was also observed. Treatment with fluoxetine increased this enzyme activity and reversed the effect of stress. Chronic fluoxetine decreased the ingestion of sweet food in both groups. This result is in agreement with suggestions that reduction of Na+, K+-ATPase activity is a caracteristic of depressive disorders. Fluoxetine reversed this effect. Therefore it is possible that altered Na+, K+-ATPase activity may be involved in the pathophysiology of depression in patients.


Neurochemistry International | 2009

Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid.

Cristiane Matté; Vanize Mackedanz; Francieli M. Stefanello; Emilene B. S. Scherer; Ana Cristina Andreazza; Caroline Zanotto; Angela M. Moro; Solange Cristina Garcia; Carlos Alberto Saraiva Goncalves; Bernardo Erdtmann; Mirian Salvador; Angela Terezinha de Souza Wyse

We have previously demonstrated that acute hyperhomocysteinemia induces oxidative stress in rat brain. In the present study, we initially investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative damage, namely total radical-trapping antioxidant potential and activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), as well as on DNA damage in parietal cortex and blood of rats. We also evaluated the effect of folic acid on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of Hcy (0.3-0.6 micromol/g body weight), and/or folic acid (0.011 micromol/g body weight) from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, parietal cortex and total blood was collected. Results showed that chronic homocysteine administration increased DNA damage, evaluated by comet assay, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in parietal cortex and blood/plasma. Folic acid concurrent administration prevented homocysteine effects, possibly by its antioxidant and DNA stability maintenance properties. If confirmed in human beings, our results could propose that the supplementation of folic acid can be used as an adjuvant therapy in disorders that accumulate homocysteine.


Brain Research | 2003

Glutaric acid induces oxidative stress in brain of young rats.

Fernanda de Oliveira Marques; Martine Elisabeth Kienzle Hagen; Carolina Didonet Pederzolli; Angela Malysz Sgaravatti; Karina Durigon; Carla Giordani Testa; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner; Carlos Severo Dutra-Filho

This study investigated the effects of glutaric acid, which predominantly accumulates in glutaric acidemia type I, on some in vitro parameters of oxidative stress in brain of young rats. We evaluated chemiluminescence, total radical-antioxidant potential (TRAP) and the activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase in brain tissue homogenates in the presence of glutaric acid at concentrations ranging from 0.05 to 2.0 mM. The acid significantly increased chemiluminescence (up to 65%) and reduced total radical-antioxidant potential (up to 28%) and glutathione peroxidase activity (up to 46%), without affecting catalase and superoxide dismutase activities. The results provide evidence that glutaric acid induces oxidative stress in vitro in rat brain. If these findings also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by glutaric acidemia type I.


PLOS ONE | 2012

Differential Macrophage Activation Alters the Expression Profile of NTPDase and Ecto-5′-Nucleotidase

Rafael Fernandes Zanin; Elizandra Braganhol; Letícia Scussel Bergamin; Luís Felipe Ingrassia Campesato; Alfeu Zanotto Filho; José Cláudio Fonseca Moreira; Fernanda Bueno Morrone; Jean Sévigny; Maria Rosa Chitolina Schetinger; Angela Terezinha de Souza Wyse; Ana Maria Oliveira Battastini

Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5′-nucleotidase/CD73 (ecto-5′-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6–8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.

Collaboration


Dive into the Angela Terezinha de Souza Wyse's collaboration.

Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Clovis Milton Duval Wannmacher

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carlos Severo Dutra-Filho

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carlos Alexandre Netto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Emilene B. S. Scherer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Emilio L. Streck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Carlos Severo Dutra Filho

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Felipe Schmitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Janaína Kolling

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Cristiane Matté

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge