Angela Trovato-Salinaro
University of Catania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angela Trovato-Salinaro.
Brain Research | 2000
Natale Belluardo; Giuseppa Mudò; Angela Trovato-Salinaro; Sabine Le Gurun; Anne Charollais; Véronique Serre-Beinier; Giuseppe Amato; Jacques-Antoine Haefliger; Paolo Meda; D. F. Condorelli
The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neuronal marker (NeuN), we found that neuronal cells are responsible for the expression of Cx36 mRNA in inferior olive, cerebellum, striatum, hippocampus and cerebral cortex. Cx36 mRNA was also demonstrated in parvalbumin-containing GABAergic interneurons of cerebral cortex, striatum, hippocampus and cerebellar cortex. Analysis of developing brain further revealed that Cx36 reaches a peak of expression in the first two weeks of postnatal life, and decreases sharply during the third week. Moreover, in these early stages of postnatal development Cx36 is detectable in neuronal populations that are devoid of Cx36 mRNA at the adult stage. The developmental changes of Cx36 expression suggest a participation of this connexin in the extensive interneuronal coupling which takes place in several regions of the early postnatal brain.
Brain Research Reviews | 2000
D. F. Condorelli; Natale Belluardo; Angela Trovato-Salinaro; Giuseppa Mudò
Cx36 is the first mammalian member of a novel subgroup of the connexin family, characterized by a long cytoplasmic loop, a peculiar gene structure and a preferential expression in cell types of neural origin. In the present review we summarize the evidence in favour of its predominant expression in neuronal cells in the mammalian central nervous system, such as results from experiments with specific neurotoxins and co-localization of Cx36 mRNA and a neuronal marker. We also report a detailed description of Cx36 mRNA distribution in the rat and human central nervous system by in situ hybridization and, for each brain region, we correlate the novel findings with previous morphological or functional demonstrations of neuronal gap junctions in the same area.
European Journal of Neuroscience | 2003
D. F. Condorelli; Angela Trovato-Salinaro; Giuseppa Mudò; Melita B. Mirone; Natale Belluardo
The identification of connexins (Cxs) expressed in neuronal cells represents a crucial step for understanding the direct communication between neurons and between neuron and glia. In the present work, using a double‐labelling method combining in situ hybridization for Cx mRNAs with immunohistochemical detection for neuronal markers, we provide evidence that, among cerebral connexins (Cx26, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45 and Cx47), only Cx45 and Cx36 mRNAs are localized in neuronal cells in both developing and adult rat brain. In order to establish whether connexin expression is influenced in vivo by abnormal neuronal activity, we examined the short‐term effects of kainate‐induced seizures. The results revealed an unexpected expression of Cx26 and Cx45 mRNA in neuronal cells undergoing apoptotic cell death in the CA3–CA4, in the hilus of the hippocampus and in other brain regions involved in seizure‐induced lesion. However, the expression of Cx26 and Cx45 mRNAs was not associated with detectable expression of corresponding proteins as evaluated by immunohistochemistry with specific antibodies. Moreover, in the same brain regions Cx32 and Cx43 were up‐regulated in non‐neruronal cells whereas the neuronal Cx36 was down‐regulated. Taken together the present results provide novel information regarding the specific subpopulation of neurons expressing Cx45 and raise the question of the meaning of connexin mRNA expression in the neuronal apoptotic process.
Journal of Neuroscience Research | 1999
Natale Belluardo; Angela Trovato-Salinaro; Giuseppa Mudò; Y.L. Hurd; D. F. Condorelli
Rat connexin‐36 (Cx36) is the first gap junction protein shown to be expressed predominantly in neuronal cells of the mammalian central nervous system. As a prerequisite for studies devoted to the investigation of the possible role of this connexin in human neurological diseases, we report the cloning and sequencing of the human Cx36 gene, its chromosomal localization, and its pattern of expression in the human brain analyzed by radioactive in situ hybridization. The determination of the human gene sequence revealed that the coding sequence of Cx36 is highly conserved (98% identity at the protein level with the mouse and rat Cx36 and 80% with the ortholog perch and skate Cx35), and that the gene structure is that typical of the Cx35/36 subgroup observed in the other species (presence of a single intron located within the coding region, 71 bp after the translation initiation site). The distribution of Cx36 in several regions of the human central nervous system is similar to that previously observed in rat brain. The most intense signal among the cerebral areas examined by in situ hybridization was observed in the inferior olivary complex, both in principal and accessory nuclei. A moderate labeling was also observed in several myelencephalic nuclei, in specific cells of the the cerebellar cortex, in a relatively large subpopulation of cells in the cerebral cortex, in the hilus of the dentate gyrus, and in the strata radiatum and oriens of hippocampal subfields. Moreover, labeled cells were revealed in all the lamina of the spinal cord gray matter. The chromosomal localization of the human Cx36 gene was determined by fluorescence in situ hybridization. The results allowed assignment of the gene to band 15q14, thus making it a possible candidate gene for a form of familial epilepsy previously linked to the same chromosomal band. The knowledge of the human Cx36 gene sequence, of its chromosomal localization, and of its pattern of expression opens new avenues for the analysis of its possible involvement in human genetic and acquired neuropathology. J. Neurosci. Res. 57:740–752, 1999.
Molecular and Cellular Neuroscience | 2002
D. F. Condorelli; Giuseppa Mudò; Angela Trovato-Salinaro; Melita B. Mirone; Giuseppe Amato; Natale Belluardo
Glial connexins (Cxs) make an extensively interconnected functional syncytium created by a network of gap junctions between astrocytes and oligodendrocytes. Among Cxs expressed in the brain, Cx30 is expressed in grey matter astrocytes, as shown at the protein level by immunoistochemistry. In the present study we aimed to perform a detailed study of the regional distribution of Cx30 mRNA in the adult and postnatal developing rat brain, analyzing its expression by in situ hybridization, and determining its cell type localization by double labeling. Recently, it has been suggested that neuronal activity may control the level of intercellular communication between astrocytes through gap junctions channels. Thus, a second aim of the present study was to investigate the short-term effects of kainate-induced seizures on Cx30 expression. The results showed that, in basal condition, Cx30 was expressed only in grey matter astrocytes with distinct regional patterns in developing and adult brain. Kainate treatment induced strong and region-specific changes of astroglial Cx30 mRNA levels and expression of Cx30 mRNA in neuronal cells undergoing cell death, suggesting a direct or indirect involvement of this connexin in the neuronal apoptotic process.
Brain Research | 2007
Giuseppa Mudò; Angela Trovato-Salinaro; Giuseppa Caniglia; Qingzhang Cheng; D. F. Condorelli
In order to understand the role of metabotropic glutamate receptors (mGluRs) in the brain, it is important to know how the mGluRs are differentially expressed among the different cell types. At present, the cellular expression of mGluR3 and mGluR5 has been mostly studied in terms of proteins with observations suggesting the expression of both mGluR3 and mGluR5 in neuronal and in glial cells. In order to verify the brain cell type-expressing mGluR3 and mGluR5 mRNAs, both in normal and injured brain, we performed a double labeling analysis, by in situ hybridization for mGluR3 or mGluR5 mRNA and immunohistochemistry for specific cellular markers. This approach allowed us to find mGluR3 mRNA expressed in neurons (NeuN-positive cells), and in glial cells, such as astrocytes (GFAP-positive cells) and oligodendrocytes (CNPase-positive cells). The same analysis showed that only NeuN-positive cells express mGluR5 mRNA. The time course of mGluR3 mRNA expression in two models of hippocampal formation lesion, kainate-induced seizures or ibotenic acid injection, showed an increased expression of mGluR3 in the area of lesion. This effect appears 1 week after the injury and was localized in GFAP- and CNPase-positive cells. In contrast, mGluR5 was not found expressed in the area of lesion. The present results contribute to extend available data on cell type-expressing mGluR3 and mGluR5 in normal and injured brain and could be relevant to understand the mechanisms that drive neuron-glial cells interaction both in normal and repairing processes.
Neuroscience Letters | 2008
Monica Frinchi; Alessandra Bonomo; Angela Trovato-Salinaro; D. F. Condorelli; Kjell Fuxe; Marcello G. Spampinato; Giuseppa Mudò
Several findings have suggested the existence in the subventricular zone (SVZ) from sagittal sections of adult rat brain of a trophic mechanism, mediated by fibroblast growth factor-2 (FGF-2) and its multiple high-affinity FGF receptors (FGFRs), regulating neurogenesis mainly by controlling precursor cell proliferation. However, no clear data are available on the expression of FGF-2 and FGFRs in proliferating precursor cells of the SVZ. To address these questions we examined FGF-2 mRNA and its FGFR mRNA expression in proliferating precursor cells of the SVZ by using a double labeling procedure, combining in situ hybridization for FGF-2 and its FGFR mRNA with immunohistochemistry for bromodeoxyuridine (BrdU), a marker for proliferating cells. The results showed that FGFR1 and FGFR2 mRNAs were expressed in BrdU-labeled proliferating precursor cells, whereas FGFR3 and FGF-2 mRNAs were not, suggesting that in the SVZ the proliferating precursor cells express FGFR1 or FGFR2 and they may respond to FGF-2 released by non-proliferating cells. The FGFR4 mRNA was not found expressed in the SVZ. In the future, by identifying the cell types expressing FGFRs, it will be possible to gain insight into the functional activity of FGF2 within the SVZ.
Respiratory Research | 2006
Angela Trovato-Salinaro; Elisa Trovato-Salinaro; Marco Failla; Claudio Mastruzzo; Valerio Tomaselli; Elisa Gili; Nunzio Crimi; D. F. Condorelli; Carlo Vancheri
RationaleGap junctions are membrane channels formed by an array of connexins which links adjacent cells realizing an electro- metabolic synapse. Connexin-mediated communication is crucial in the regulation of cell growth, differentiation, and development. The activation and proliferation of phenotypically altered fibroblasts are central events in the pathogenesis of idiopathic pulmonary fibrosis. We sought to evaluate the role of connexin-43, the most abundant gap-junction subunit in the human lung, in the pathogenesis of this condition.MethodsWe investigated the transcription and protein expression of connexin-43 and the gap-junctional intercellular communication (GJIC) in 5 primary lung fibroblast lines derived from normal subjects (NF) and from 3 histologically proven IPF patients (FF).ResultsHere we show that connexin-43 mRNA was significantly reduced in FF as demonstrated by standard and quantitative RT-PCR. GJIC was functionally evaluated by means of flow-cytometry. In order to demonstrate that dye spreading was taking place through gap junctions, we used carbenoxolone as a pharmacological gap-junction blocker. Carbenoxolone specifically blocked GJIC in our system in a concentration dependent manner. FF showed a significantly reduced homologous GJIC compared to NF. Similarly, GJIC was significantly impaired in FF when a heterologous NF line was used as dye donor, suggesting a complete defect in GJIC of FF.ConclusionThese results suggest a novel alteration in primary lung fibroblasts from IPF patients. The reduced Cx43 expression and the associated alteration in cell-to-cell communication may justify some of the known pathological characteristic of this devastating disease that still represents a challenge to the medical practice.
Cell Communication and Adhesion | 2001
A. Calabrese; M. Güldenagel; Anne Charollais; Christophe Mas; D. Caton; J. Bauquis; Véronique Serre-Beinier; Dorothée Caille; Goran Söhl; B. Teubner; S. Le Gurun; Angela Trovato-Salinaro; D. F. Condorelli; Jacques-Antoine Haefliger; Klaus Willecke; Paolo Meda
The secretory, duct, connective and vascular cells of pancreas are connected by gap junctions, made of different connexins. The insulin-producing β-cells, which form the bulk of endocrine pancreatic islets, express predominantly Cx36. To assess the function of this connexin, we have first studied its expression in rats, during sequential changes of pancreatic function which were induced by the implantation of a secreting insulinoma. We observed that changes in β-cells function were paralleled by changes in Cx36 expression. We have also begun to investigate mutant mice lacking Cx36. The absence of this protein did not affect the development and differentiation of β-cells but appeared to alter their secretion. We have studied this effect in MIN6 cells which spontaneously express Cx36. After stable transfection of a construct that markedly reduced the expression of this connexin, we observed that MIN6 cells were no more able to secrete insulin, in contrast to wild type controls, and differentially displayed a series of still unknown genes. The data provide evidence that Cx36-dependent signaling contributes to regulate the function of native and tumoral insulin-producing cells.
Brain Research | 2009
Giuseppa Mudò; Angela Trovato-Salinaro; Vincenza Barresi; Natale Belluardo; D. F. Condorelli
Calcium sensing receptor (CaSR), isolated for the first time from bovine and human parathyroid, is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expression in neurons and oligodendrocytes, whereas it was not found expressed both in the microglia and in astrocytes. One week after kainate-induced seizure CaSR was found in the injured CA3 region of the hippocampus and very interestingly it was found up-regulated in the neurons of CA1-CA2 and dentate gyrus. Similarly, 1 week following ibotenic acid injection in the hippocampus, CaSR mRNA expression was increased in oligodendrocytes both in the lesioned area and in the contralateral CA1-CA3 pyramidal cell layers and dentate gyrus. One week after needle-induced mechanical lesion an increase of labeled cells expressing CaSR mRNA was observed along the needle track. In conclusion, the present results contribute to extend available data on cell type-expressing CaSR in normal and injured brain and could spur to understand the role of CaSR in repairing processes of brain injury.