Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ángeles Hidalgo is active.

Publication


Featured researches published by Ángeles Hidalgo.


PLOS ONE | 2013

The Sinorhizobium fredii HH103 Lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules

Isabel Margaret; M. Mercedes Lucas; Sebastián Acosta-Jurado; Ana M. Buendía-Clavería; Elena Fedorova; Ángeles Hidalgo; Miguel A. Rodríguez-Carvajal; Dulce N. Rodríguez-Navarro; José E. Ruiz-Sainz; José M. Vinardell

In this work we have characterised the Sinorhizobium fredii HH103 greA lpsB lpsCDE genetic region and analysed for the first time the symbiotic performance of Sinorhizobium fredii lps mutants on soybean. The organization of the S. fredii HH103 greA, lpsB, and lpsCDE genes was equal to that of Sinorhizobium meliloti 1021. S. fredii HH103 greA, lpsB, and lpsE mutant derivatives produced altered LPS profiles that were characteristic of the gene mutated. In addition, S. fredii HH103 greA mutants showed a reduction in bacterial mobility and an increase of auto-agglutination in liquid cultures. RT-PCR and qPCR experiments demonstrated that the HH103 greA gene has a positive effect on the transcription of lpsB. Soybean plants inoculated with HH103 greA, lpsB or lpsE mutants formed numerous ineffective pseudonodules and showed severe symptoms of nitrogen starvation. However, HH103 greA and lps mutants were also able to induce the formation of a reduced number of soybean nodules of normal external morphology, allowing the possibility of studying the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis. The infected cells of these nodules showed signs of early termination of symbiosis and lytical clearance of bacteroids. These cells also had very thick walls and accumulation of phenolic-like compounds, pointing to induced defense reactions. Our results show the importance of bacterial LPS in later stages of the S. fredii HH103-soybean symbiosis and their role in preventing host cell defense reactions. S. fredii HH103 lpsB mutants also showed reduced nodulation with Vigna unguiculata, although the symbiotic impairment was less pronounced than in soybean.


Molecular Plant-microbe Interactions | 2006

Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan.

Maribel Parada; José M. Vinardell; Francisco Javier Ollero; Ángeles Hidalgo; Rocío Gutiérrez; Ana M. Buendía-Clavería; Wang Lei; Isabel Margaret; Francisco Javier López-Baena; Antonio M. Gil-Serrano; Miguel A. Rodríguez-Carvajal; Javier Moreno; José E. Ruiz-Sainz

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.


Molecular Plant-microbe Interactions | 2004

NolR Regulates Diverse Symbiotic Signals of Sinorhizobium fredii HH103

José M. Vinardell; Francisco Javier Ollero; Ángeles Hidalgo; Francisco Javier López-Baena; Carlos Medina; Kalojan Ivanov-Vangelov; Maribel Parada; Nuria Madinabeitia; M. R. Espuny; Ramón A. Bellogín; M. Camacho; D. N. Rodríguez-Navarro; María Eugenia Soria-Díaz; Antonio M. Gil-Serrano; José E. Ruiz-Sainz

We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected. Mutant SVQ517 produced Nod factors carrying N-methyl residues at the nonreducing N-acetyl-glucosamine, which never have been detected in S. fredii HH103. Plasmid pMUS675 increased the amounts of EPS produced by HH103-1 and SVQ517. The flavonoid genistein repressed EPS production of HH103-1 and SVQ517 but the presence of pMUS675 reduced this repression. The presence of plasmid pMUS675 clearly decreased the secretion of SR proteins. Inactivation, or overexpression, of nolR decreased the capacity of HH103 to nodulate Glycine max. However, HH103-1 and SVQ517 carrying plasmid pMUS675 showed enhanced nodulation capacity with Vigna unguiculata. The nolR gene was positively identified in all S. fredii strains investigated, S. xinjiangense CCBAU110, and S. saheli USDA4102. Apparently, S. teranga USDA4101 does not contain this gene.


Molecular Plant-microbe Interactions | 2009

Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS.

Juan C. Crespo-Rivas; Isabel Margaret; Ángeles Hidalgo; Ana M. Buendía-Clavería; Francisco Javier Ollero; Francisco Javier López-Baena; Piedad del Socorro Murdoch; Miguel A. Rodríguez-Carvajal; M. Eugenia Soria-Díaz; María Reguera; Javier Lloret; David Sumpton; Jackie A. Mosely; Jane Thomas-Oates; Anton A. N. van Brussel; Antonio M. Gil-Serrano; José M. Vinardell; José E. Ruiz-Sainz

Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette. Mutant SVQ562 did not produce CG, was immobile, and grew more slowly in the hypoosmotic GYM medium, but its survival in distilled water was equal to that of HH103-Rifr. Lipopolysaccharides and K-antigen polysaccharides produced by SVQ562 were not apparently altered. SVQ562 overproduced exopolysaccharides (EPS) and its exoA gene was transcribed at higher levels than in HH103-Rifr. In GYM medium, the EPS produced by SVQ562 was of higher molecular weight and carried higher levels of substituents than that produced by HH103-Rifr. The expression of the SVQ562 cgsColon, two colonslacZ fusion was influenced by the pH and the osmolarity of the growth medium. The S. fredii cgs mutants SVQ561 (carrying cgs::Omega) and SVQ562 only formed pseudonodules on Glycine max (determinate nodules) and on Glycyrrhiza uralensis (indeterminate nodules). Although nodulation factors were detected in SVQ561 cultures, none of the cgs mutants induced any macroscopic response in Vigna unguiculata roots. Thus, the nodulation process induced by S. fredii cgs mutants is aborted at earlier stages in V. unguiculata than in Glycine max.


Archives of Microbiology | 2012

Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume.

Isabel Margaret-Oliver; Wang Lei; Maribel Parada; Miguel A. Rodríguez-Carvajal; Juan C. Crespo-Rivas; Ángeles Hidalgo; Antonio M. Gil-Serrano; Javier Moreno; Dulce N. Rodríguez-Navarro; Ana M. Buendía-Clavería; Javier Ollero; José E. Ruiz-Sainz; José M. Vinardell

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU,rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and 1H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.


Microbiology | 2010

The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea.

Ángeles Hidalgo; Isabel Margaret; Juan C. Crespo-Rivas; Maribel Parada; Piedad del Socorro Murdoch; Abigail Lopez; Ana M. Buendía-Clavería; Javier Moreno; Marta Albareda; Antonio M. Gil-Serrano; Miguel A. Rodríguez-Carvajal; José M. Palacios; José E. Ruiz-Sainz; José M. Vinardell

In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S. fredii HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of rkpU in KPS production has been studied in rhizobia. Both rkpJ and rkpU mutants were unable to produce KPS. The rkpU derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor rkpJ and rkpU expression was affected by the presence of the flavonoid genistein. Soybean (Glycine max) plants inoculated with the S. fredii HH103 rkpU and rkpJ mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the rkpJ nor the rkpU mutants were significantly impaired in their symbiotic interaction with cowpea (Vigna unguiculata). Thus, we demonstrate for the first time to our knowledge the involvement of the rkpU gene in rhizobial KPS production and also show that the symbiotic relevance of the S. fredii HH103 KPS depends on the specific bacterium-legume interaction.


Archive | 2018

A New, Nondestructive, Split-Root System for Local and Systemic Plant Responses Studies with Soybean

Ángeles Hidalgo; José E. Ruiz-Sainz; José M. Vinardell

Plants use long-distance signaling mechanisms to coordinate their growth and control their interactions, positive or negative, with microbes. Split-root systems (SRS) have been used to study the relevance of both local and systemic plant mechanisms that participate in the control of rhizobia-legume symbioses. In this work we have developed a modification of the standard split-root system (SRS) used with soybean. This modified method, unlike previous systems, operates in hydroponics conditions and therefore is nondestructive and allows for the continuous monitoring of soybean roots throughout the whole experiment.


microbiology 2017, Vol. 3, Pages 323-334 | 2017

Studies of rhizobial competitiveness for nodulation in soybean using a non-destructive split-root system

Ángeles Hidalgo; Francisco-Javier López-Baena; José-Enrique Ruiz-Sainz; José-María Vinardell

Split-root systems (SRS) constitute an appropriate methodology for studying the relevance of both local and systemic mechanisms that participate in the control of rhizobia-legume symbioses. In fact, this kind of approach allowed to demonstrate the autoregulation of nodulation (AON) systemic response in soybean in the 1980s. In SRS, the plant main root is cut and two lateral roots that emerge from the seedlings after root-tip removal are confined into separate compartments. After several days of growth, these plants have two separate roots that can be inoculated with the same or with different bacteria, at the same or at different times. In this work, we have used a non-destructive SRS to study two different competitiveness relations between rhizobial strains in soybean roots. One of them is the competition for nodulation between two soybean-nodulating rhizobia: the slow-grower Bradyrhizobium japonicum USDA110 and the fast-grower Sinorhizobium fredii HH103. The second is the competitive blocking of S. fredii 257DH4 nodulation in the American soybean Osumi by Sinorhizobium fredii USDA257, which is unable to nodulate American soybeans. Our results showed that the competitiveness relationships studied in this work are mitigated or even avoided when the competitive strains are spatially separated in different compartments containing half-roots from the same plant, suggesting that competitive relations are more related to local plant responses. In our opinion, split-root systems are an appropriate approach to further study competitive relations among rhizobial strains.


Archives of Microbiology | 2004

The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner

José M. Vinardell; Francisco Javier López-Baena; Ángeles Hidalgo; Francisco Javier Ollero; Ramón A. Bellogín; M. R. Espuny; Francisco Temprano; Francisco Romero; Hari B. Krishnan; Steven G. Pueppke; José E. Ruiz-Sainz


Systematic and Applied Microbiology | 2003

A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China.

Jane Thomas-Oates; J. Bereszczak; E. Edwards; A. Gill; S. Noreen; J. Zhou; Ming Chen; L.H. Miao; F.L. Xie; J.K. Yang; Q. Zhou; Shaoqing Yang; X.H. Li; L. Wang; Herman P. Spaink; Helmi R. M. Schlaman; Marga Harteveld; Clara L. Díaz; A. A. N. van Brussel; M. Camacho; D. N. Rodríguez-Navarro; C. Santamaría; Francisco Temprano; J.M. Acebes; Ramón A. Bellogín; Ana M. Buendía-Clavería; María Teresa Cubo; M. R. Espuny; Antonio Gil; Rocío Gutiérrez

Collaboration


Dive into the Ángeles Hidalgo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge