Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angélica T. Vieira is active.

Publication


Featured researches published by Angélica T. Vieira.


Nature | 2009

Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43

Kendle M. Maslowski; Angélica T. Vieira; Aylwin Ng; Jan Kranich; Frederic Sierro; Di Yu; Heidi C Schilter; Michael S. Rolph; Fabienne Mackay; David Artis; Ramnik J. Xavier; Mauro M. Teixeira; Charles R. Mackay

The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota. A feature of human ulcerative colitis and other colitic diseases is a change in ‘healthy’ microbiota such as Bifidobacterium and Bacteriodes, and a concurrent reduction in SCFAs. Moreover, increased intake of fermentable dietary fibre, or SCFAs, seems to be clinically beneficial in the treatment of colitis. SCFAs bind the G-protein-coupled receptor 43 (GPR43, also known as FFAR2), and here we show that SCFA–GPR43 interactions profoundly affect inflammatory responses. Stimulation of GPR43 by SCFAs was necessary for the normal resolution of certain inflammatory responses, because GPR43-deficient (Gpr43-/-) mice showed exacerbated or unresolving inflammation in models of colitis, arthritis and asthma. This seemed to relate to increased production of inflammatory mediators by Gpr43-/- immune cells, and increased immune cell recruitment. Germ-free mice, which are devoid of bacteria and express little or no SCFAs, showed a similar dysregulation of certain inflammatory responses. GPR43 binding of SCFAs potentially provides a molecular link between diet, gastrointestinal bacterial metabolism, and immune and inflammatory responses.


Journal of Immunology | 2004

The Essential Role of the Intestinal Microbiota in Facilitating Acute Inflammatory Responses

Danielle G. Souza; Angélica T. Vieira; Adriana C. Soares; Vanessa Pinho; Jacques Robert Nicoli; Leda Quercia Vieira; Mauro M. Teixeira

The restoration of blood flow, i.e., reperfusion, is the treatment of choice to save viable tissue following acute ischemia of a vascular territory. Nevertheless, reperfusion can be accompanied by significant inflammatory events that limit the beneficial effects of blood flow restoration. To evaluate the potential role of the intestinal microbiota in facilitating the development of tissue injury and systemic inflammation, germ-free and conventional mice were compared in their ability to respond to ischemia and reperfusion injury. In conventional mice, there was marked local (intestine) and remote (lung) edema formation, neutrophil influx, hemorrhage, and production of TNF-α, KC, MIP-2, and MCP-1. Moreover, there was an increase in the concentration of serum TNF-α and 100% lethality. In germ-free mice, there was no local, remote, or systemic inflammatory response or lethality after intestinal ischemia and reperfusion and, in contrast to conventional mice, germ-free animals produced greater amounts of IL-10. Similar results were obtained after administration of LPS, i.e., little production of TNF-α or lethality and production of IL-10 after LPS in germ-free mice. Blockade of IL-10 with Abs induced marked inflammation and lethality in germ-free mice after ischemia and reperfusion or LPS administration, demonstrating that the ability of these mice to produce IL-10 was largely responsible for their “no inflammation” phenotype. This was consistent with the prevention of reperfusion-associated injury by the exogenous administration of IL-10 to conventional mice. Thus, the lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness.


Immunological Reviews | 2012

Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases.

Laurence Macia; Alison N. Thorburn; Lauren C. Binge; Eliana Mariño; Kate E. Rogers; Kendle M. Maslowski; Angélica T. Vieira; Jan Kranich; Charles R. Mackay

Summary:  Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G‐protein coupled receptors such as GPR43.


Arthritis & Rheumatism | 2008

The chemokine receptors CXCR1/CXCR2 modulate antigen-induced arthritis by regulating adhesion of neutrophils to the synovial microvasculature.

Fernanda M. Coelho; Vanessa Pinho; Flávio A. Amaral; Daniela Sachs; Vivian V. Costa; David Henrique Rodrigues; Angélica T. Vieira; Tarcília Aparecida Silva; Daniele G. Souza; Riccardo Bertini; Antônio Lúcio Teixeira; Mauro M. Teixeira

OBJECTIVE The chemokine receptors CXCR1 and CXCR2 play a role in mediating neutrophil recruitment and neutrophil-dependent injury in several models of inflammation. We undertook this study to investigate the role of these receptors in mediating neutrophil adhesion, subsequent migration, and neutrophil-dependent hypernociception in a murine model of monarticular antigen-induced arthritis (AIA). METHODS AIA was induced by administration of antigen into the knee joint of previously immunized mice. Intravital microscopy studies were performed to assess leukocyte rolling and adhesion. Mechanical hypernociception was investigated using an electronic pressure meter. Neutrophil accumulation in the tissue was measured by counting neutrophils in the synovial cavity and assaying myeloperoxidase activity. Levels of tumor necrosis factor alpha (TNFalpha) and the chemokines CXCL1 and CXCL2 were quantified by enzyme-linked immunosorbent assay. Histologic analysis was performed to evaluate the severity of arthritis and leukocyte infiltration. RESULTS Antigen challenge in immunized mice induced production of TNFalpha, CXCL1, and CXCL2 and also resulted in neutrophil recruitment, leukocyte rolling and adhesion, and hypernociception. Treatment with reparixin or DF2162 (allosteric inhibitors of CXCR1/CXCR2) decreased neutrophil recruitment, an effect that was associated with marked inhibition of neutrophil adhesion. Drug treatment also inhibited TNFalpha production, hypernociception, and the overall severity of the disease in the tissue. CONCLUSION Blockade of CXCR1/CXCR2 receptors inhibits neutrophil recruitment by inhibiting the adhesion of neutrophils to synovial microvessels. As a consequence, there is decreased local cytokine production and reduced hypernociception, as well as ameloriation of overall disease in the tissue. These studies suggest a potential therapeutic role for the modulation of CXCR1/CXCR2 receptor signaling in the treatment of arthritis.


Frontiers in Immunology | 2013

The Role of Probiotics and Prebiotics in Inducing Gut Immunity

Angélica T. Vieira; Mauro M. Teixeira; Flaviano S. Martins

The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.


Journal of Immunology | 2007

The Required Role of Endogenously Produced Lipoxin A4 and Annexin-1 for the Production of IL-10 and Inflammatory Hyporesponsiveness in Mice

Danielle G. Souza; Caio T. Fagundes; Flávio A. Amaral; Daniel Cisalpino; Lirlândia P. Sousa; Angélica T. Vieira; Vanessa Pinho; Jacques Robert Nicoli; Leda Quercia Vieira; Iolanda M. Fierro; Mauro M. Teixeira

The appropriate development of an inflammatory response is central for the ability of a host to deal with any infectious insult. However, excessive, misplaced, or uncontrolled inflammation may lead to acute or chronic diseases. The microbiota plays an important role in the control of inflammatory responsiveness. In this study, we investigated the role of lipoxin A4 and annexin-1 for the IL-10-dependent inflammatory hyporesponsiveness observed in germfree mice. Administration of a 15-epi-lipoxin A4 analog or an annexin-1-derived peptide to conventional mice prevented tissue injury, TNF-α production, and lethality after intestinal ischemia/reperfusion. This was associated with enhanced IL-10 production. Lipoxin A4 and annexin-1 failed to prevent reperfusion injury in IL-10-deficient mice. In germfree mice, there was enhanced expression of both lipoxin A4 and annexin-1. Blockade of lipoxin A4 synthesis with a 5-lipoxygenase inhibitor or Abs against annexin-1 partially prevented IL-10 production and this was accompanied by partial reversion of inflammatory hyporesponsiveness in germfree mice. Administration of BOC-1, an antagonist of ALX receptors (at which both lipoxin A4 and annexin-1 act), or simultaneous administration of 5-lipoxygenase inhibitor and anti-annexin-1 Abs, was associated with tissue injury, TNF-α production, and lethality similar to that found in conventional mice. Thus, our data demonstrate that inflammatory responsiveness is tightly controlled by the presence of the microbiota and that the innate capacity of germfree mice to produce IL-10 is secondary to their endogenous greater ability to produce lipoxin A4 and annexin-1.


British Journal of Pharmacology | 2004

Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury

Danielle G. Souza; Riccardo Bertini; Angélica T. Vieira; Fernando Q. Cunha; S. Poole; Marcello Allegretti; Francesco Colotta; Mauro M. Teixeira

Neutrophils are thought to play a major role in the mediation of reperfusion injury. CXC chemokines are known inducers of neutrophil recruitment. Here, we assessed the effects of Repertaxin, a novel low molecular weight inhibitor of human CXCL8 receptor activation, on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in the rat. Pre‐incubation of rat neutrophils with Repertaxin (10−11–10−6M) inhibited the chemotaxis of neutrophils induced by human CXCL8 or rat CINC‐1, but not that induced by fMLP, PAF or LTB4, in a concentration‐dependent manner. Repertaxin also prevented CXCL8‐induced calcium influx but not CXCL8 binding to purified rat neutrophils. In a model of mild I/R injury (30 min of ischaemia and 30 min of reperfusion), Repertaxin dose‐dependently (3–30 mg kg−1) inhibited the increase in vascular permeability and neutrophil influx. Maximal inhibition occurred at 30 mg kg−1. Following severe I/R injury (120 min of ischaemia and 120 min of reperfusion), Repertaxin (30 mg kg−1) markedly prevented neutrophil influx, the increase in vascular permeability both in the intestine and the lungs. Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. Repertaxin effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF‐α and the reperfusion‐associated lethality. For comparison, we also evaluated the effects of an anti‐CINC‐1 antibody in the model of severe I/R injury. Overall, the antibody effectively prevented tissue injury, systemic inflammation and lethality. However, the effects of the antibody were in general of lower magnitude than those of Repertaxin. In conclusion, CINC‐1 and possibly other CXC chemokines, acting on CXCR2, have an important role during I/R injury. Thus, drugs, such as Repertaxin, developed to block the function of the CXCR2 receptor may be effective at preventing reperfusion injury in relevant clinical situations.


Journal of Immunology | 2010

Anti-Inflammatory Effects of the Activation of the Angiotensin-(1–7) Receptor, Mas, in Experimental Models of Arthritis

Kátia Daniela da Silveira; Fernanda M. Coelho; Angélica T. Vieira; Daniela Sachs; Lívia Corrêa Barroso; Vivian V. Costa; Thales Lages Bicalho Bretas; Michael Bader; Lirlândia P. Sousa; Tarcília Aparecida Silva; Robson A.S. Santos; Ana Cristina Simões e Silva; Mauro M. Teixeira

Activation of the renin-angiotensin (Ang) system induces inflammation via interaction between Ang II and type 1 receptor on leukocytes. The relevance of the new arm of the renin-Ang system, namely Ang-converting enzyme-2/Ang-(1–7)/Mas receptor, for inflammatory responses is not known and was investigated in this study. For this purpose, two experimental models were used: Ag-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Male C57BL/6 wild-type or Mas−/− mice were subjected to AIA and treated with Ang-(1–7), the Mas agonist AVE 0991, or vehicle. AdIA was performed in female rats that were given AVE 0991 or vehicle. In wild-type mice, Mas protein is expressed in arthritic joints. Administration of AVE 0991 or Ang-(1–7) decreased AIA-induced neutrophil accumulation, hypernociception, and production of TNF-α, IL-1β, and CXCL1. Histopathological analysis showed significant reduction of inflammation. Mechanistically, AVE 0991 reduced leukocyte rolling and adhesion, even when given after Ag challenge. Mas−/− mice subjected to AIA developed slightly more pronounced inflammation, as observed by greater neutrophil accumulation and cytokine release. Administration of AVE 0991 was without effect in Mas−/− mice subjected to AIA. In rats, administration of AVE 0991 decreased edema, neutrophil accumulation, histopathological score, and production of IL-1β and CXCL1 induced by AdIA. Therefore, activation of Mas receptors decreases neutrophil influx and cytokine production and causes significant amelioration of arthritis in experimental models of arthritis in rats and mice. This approach might represent a novel therapeutic opportunity for arthritis.


Journal of Leukocyte Biology | 2010

PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA‐PI3K/Akt‐dependent and NF‐κB‐independent manner

Lirlândia P. Sousa; Fernando Lopes; Douglas M. Silva; Luciana P. Tavares; Angélica T. Vieira; Bárbara M. Rezende; Aline F. Carmo; Remo Castro Russo; Cristiana C. Garcia; Cláudio A. Bonjardim; Ana L. Alessandri; Adriano G. Rossi; Vanessa Pinho; Mauro M. Teixeira

PDE4 inhibitors are effective anti‐inflammatory drugs whose effects and putative mechanisms on resolution of inflammation and neutrophil apoptosis in vivo are still unclear. Here, we examined the effects of specific PDE4 inhibition on the resolution of neutrophilic inflammation in the pleural cavity of LPS‐challenged mice. LPS induced neutrophil recruitment that was increased at 4 h, peaked at 8–24 h, and declined thereafter. Such an event in the pleural cavity was preceded by increased levels of KC and MIP‐2 at 1 and 2 h. Treatment with the PDE4 inhibitor rolipram, at 4 h after LPS administration, decreased the number of neutrophils and increased the percentage of apoptotic cells in the pleural cavity in a PKA‐dependent manner. Conversely, delayed treatment with a CXCR2 antagonist failed to prevent neutrophil recruitment. Forskolin and db‐cAMP also decreased the number of neutrophils and increased apoptosis in the pleural cavity. The proapoptotic effect of rolipram was associated with decreased levels of the prosurvival protein Mcl‐1 and increased caspase‐3 cleavage. The pan‐caspase inhibitor zVAD‐fmk prevented rolipram‐induced resolution of inflammation. LPS resulted in a time‐dependent activation of Akt, which was blocked by treatment with rolipram or PI3K and Akt inhibitors, and PI3K and Akt inhibitors also enhanced apoptosis and promoted neutrophil clearance. Although LPS induced NF‐κB activation, which was blocked by rolipram, NF‐κB inhibitors did not promote resolution of neutrophil accumulation in this model. In conclusion, our data show that PDE4 inhibition resolves neutrophilic inflammation by promoting caspase‐dependent apoptosis of inflammatory cells by targeting a PKA/PI3K/Akt‐dependent survival pathway.


Arthritis & Rheumatism | 2015

A Role for Gut Microbiota and the Metabolite‐Sensing Receptor GPR43 in a Murine Model of Gout

Angélica T. Vieira; Laurence Macia; Izabela Galvão; Flaviano S. Martins; Maria Cecília C. Canesso; Flávio A. Amaral; Cristiana C. Garcia; Kendle M. Maslowski; Ellen De Leon; Doris Shim; Jacques Robert Nicoli; Jacquie L. Harper; Mauro M. Teixeira; Charles R. Mackay

Host–microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin‐1β (IL‐1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite‐sensing receptor GPR43 in regulating inflammation in a murine model of gout.

Collaboration


Dive into the Angélica T. Vieira's collaboration.

Top Co-Authors

Avatar

Mauro M. Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Flaviano S. Martins

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Danielle G. Souza

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Jacques Robert Nicoli

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Flávio A. Amaral

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Vanessa Pinho

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Caio T. Fagundes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Lirlândia P. Sousa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Rosa Maria Esteves Arantes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Caroline M. Ferreira

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge