Angelika Rek
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angelika Rek.
Biochemical Journal | 2004
Yvonne Halden; Angelika Rek; Werner Atzenhofer; Laszlo Szilak; Astrid Wabnig
Application of reverse transcription-PCR to total RNA prepared from TNF-alpha (tumour necrosis factor-alpha)-stimulated HUVECs (human umbilical vein endothelial cells) revealed that the syndecan-2 mRNA was up-regulated by this inflammatory stimulus. By immunoprecipitation using an anti-syndecan-2 antibody on TNF-alpha-stimulated HUVEC lysates, inflammation-induced interleukin-8 was found to be an interaction partner of this HS (heparan sulphate) proteoglycan, but not of any other syndecan on these cells. The glycosylated [Syn2(ect)(+HS)] and non-glycosylated [Syn2(ect)(-HS)] forms of Syn2(ect) (the syndecan-2 ectodomain) were purified from a stably transfected human cell line and from a bacterial expression system respectively. By CD spectroscopy, Syn2(ect) was found to adopt an all-beta secondary structure. The dissociation constant of Syn2(ect)(+HS) with respect to interleukin-8 binding was determined by isothermal fluorescence titrations to be 23 nM. Despite its lack of HS chains, Syn2(ect)(-HS) exhibited significant binding to the chemokine, with a K (d) of >1 microM. Thus, in addition to glycosaminoglycan binding, protein-protein contacts might also contribute to the chemokine-proteoglycan interaction.
Journal of Biological Chemistry | 2009
S. Fabio Falsone; Angelika Rek; Roberto Cappai; Klaus Zangger
α-Synuclein is an intrinsically unstructured protein that binds to membranes, forms fibrils, and is involved in neurodegeneration. We used a reconstituted in vitro system to show that the molecular chaperone Hsp90 influenced α-synuclein vesicle binding and amyloid fibril formation, two processes that are tightly coupled to α-synuclein folding. Binding of Hsp90 to monomeric α-synuclein occurred in the low micromolar range, involving regions of α-synuclein that are critical for vesicle binding and amyloidogenesis. As a consequence, both processes were affected. In the absence of ATP, the accumulation of non-amyloid α-synuclein oligomers prevailed over fibril formation, whereas ATP favored fibril growth. This suggests that Hsp90 modulates the assembly of α-synuclein in an ATP-dependent manner. We propose that Hsp90 affects these folding processes by restricting conformational fluctuations of α-synuclein.
Journal of Biological Chemistry | 2010
Anna M. Piccinini; Kerstin Knebl; Angelika Rek; Gerhild Wildner; Maria Diedrichs-Möhring
Leukocyte recruitment from the blood into injured tissues during inflammatory diseases is the result of sequential events involving chemokines binding to their GPC receptors as well as to their glycosaminoglycan (GAG) co-receptors. The induction and the crucial role of MCP-1/CCL2 in the course of diseases that feature monocyte-rich infiltrates have been validated in many animal models, and several MCP-1/CCL2 as well as CCR2 antagonists have since been generated. However, despite some of them being shown to be efficacious in a number of animal models, many failed in clinical trials, and therapeutically interfering with the activity of this chemokine is not yet possible. We have therefore generated novel MCP-1/CCL2 mutants with increased GAG binding affinity and knocked out CCR2 activity, which were designed to interrupt the MCP-1/CCL2-related signaling cascade. We provide evidence that our lead mutant MCP-1(Y13A/S21K/Q23R) exhibits a 4-fold higher affinity toward the natural MCP-1 GAG ligand heparan sulfate and that it shows a complete deficiency in activating CCR2 on THP-1 cells. Furthermore, a significantly longer residual time on GAG ligands was observed by surface plasmon resonance. Finally, we were able to show that MCP-1(Y13A/S21K/Q23R) had a mild ameliorating effect on experimental autoimmune uveitis and that a marginal effect on oral tolerance in the group co-fed with Met-MCP-1(Y13A/S21K/Q23R) plus immunogenic peptide PDSAg was observed. These results suggest that disrupting wild type chemokine-GAG interactions by a chemokine-based antagonist can result in anti-inflammatory activity that could have potential therapeutic implications.
Molecular Immunology | 2010
Jens Bedke; Peter J. Nelson; Eva Kiss; Niklas Muenchmeier; Angelika Rek; Carl Ludwig Behnes; Norbert Gretz; Hermann Josef Gröne
Acute renal allograft damage is caused by early leukocyte infiltration which is mediated in part by chemokines presented by glycosaminoglycan (GAG) structures on endothelial surfaces. CXCL8 can recruit neutrophils and induce the firm arrest of monocytes on activated endothelial cells. A human CXCL8-based antagonist (dnCXCL8) designed to generate a dominant-negative mutant protein with enhanced binding to GAG structures and reduced CXCR1/2 receptor binding ability was tested in models of early allograft injury. The agent displayed enhanced binding to GAG structures in vitro and could antagonize CXCL8-induced firm adhesion of monocytes as well as neutrophils to activated microvascular endothelium in physiologic flow assays. In a rat model of acute renal damage, dnCXCL8 treatment limited proximal tubular damage and reduced granulocyte infiltration. In a Fischer 344 (RT1(lvl)) to Lewis (RT1(l)) rat acute renal allograft model, dnCXCL8 was found to reduce monocyte and CD8+ T-cell infiltration into glomeruli and to limit tubular interstitial inflammation and tubulitis in vivo. Early treatment of allografts with agents like dnCXCL8 may help reduce acute allograft damage and preserve renal morphology and thereby help limit chronic dysfunction.
Biochimica et Biophysica Acta | 2009
Angelika Rek; Barbara Brandner; Elena Geretti
Binding of chemokines to glycosaminoglycans (GAGs) represents a crucial step in leukocyte attraction and activation. Since chemokine oligomerisation was shown to be important for GAG binding, the apparent oligomerisation constant of RANTES was determined to be 225 nM using fluorescence anisotropy. In the presence of heparan sulfate, chemokine oligomerisation was found to be promoted by the glycosaminoglycan as expressed in the increase in cooperativity and a shift towards higher melting temperatures in thermal unfolding experiments. In surface plasmon resonance investigations of RANTES-GAG binding kinetics using a heparan sulfate-coated chip, GAG-induced oligomerisation led to a bell-shaped (bi-phasic) Scatchard plot referring to cooperativity in the chemokine-GAG interaction. This was absent in the oligomerisation deficient RANTES mutants N46R and Q48K. We have further investigated the dependence of RANTES-GAG dissociation constants on oligosaccharide chain length by performing isothermal fluorescence titrations with size-defined heparin and heparan sulfate oligosaccharides as chemokine ligands. Heparin dp18 and heparan sulfate dp14 yielded the highest affinities with Kd values of 31.7 nM and 42.9 nM, respectively. Far-UV CD spectroscopy revealed a significant conformational change of RANTES upon heparan sulfate binding which is suggested to be a pre-requisite for oligomerisation and thus for optimal GPCR activation in vivo. This was shown by the impaired chemotactic activity of the RANTES N46R and Q48K mutants.
Biochemical Society Transactions | 2006
H. Potzinger; Elena Geretti; Barbara Brandner; V. Wabitsch; Anna M. Piccinini; Angelika Rek
The interaction of chemokines and GAGs (glycosaminoglycans) on endothelial surfaces is a crucial step for establishing a chemotactic gradient which leads to the functional presentation of chemokines to their GPCRs (G-protein-coupled receptors) and thus to activation of approaching leucocytes. Based on molecular modelling, biophysical investigations, cell-based and in vivo experiments, we have developed a novel concept for therapeutically interfering with chemokine-GAG interactions, namely dominant-negative chemokine mutants with improved GAG binding affinity and knocked-out GPCR activity. These recombinant proteins displace their wild-type chemokine counterparts from the natural proteoglycan co-receptors without being able to activate leucocytes via GPCRs. Our mutant chemokines therefore represent the first protein-based GAG antagonists with high therapeutic potential in inflammatory diseases.
Biochemical Journal | 2009
Andrea Fritzer; Birgit Noiges; Daniela Schweiger; Angelika Rek; Alexander von Gabain; Eszter Nagy; Andreas Meinke
Streptococcus pyogenes is one of the most common human pathogens and possesses diverse mechanisms to evade the human immune defence. One example of its immune evasion is the degradation of the chemokine IL (interleukin)-8 by ScpC, a serine proteinase that prevents the recruitment of neutrophils to an infection site. By applying the ANTIGENome technology and using human serum antibodies, we identified Spy0416, annotated as ScpC, as a prominent antigen that induces protective immune responses in animals. We demonstrate here for the first time that the recombinant form of Spy0416 is capable of IL-8 degradation in vitro in a concentration- and time-dependent manner. Mutations in the conserved amino acid residues of the catalytic triad of Spy0416 completely abolished in vitro activity. However, the isolated predicted proteinase domain does not exhibit IL-8-degrading activity, but is dependent on the presence of the C-terminal region of Spy0416. Binding to IL-8 is mainly mediated by the catalytic domain. However, the C-terminal region modulates substrate binding, indicating that the proteolytic activity is amenable to regulation via the non-catalytic regions. The specificity for human substrates is not restricted to IL-8, since we also detected in vitro protease activity for another CXC chemokine GRO-alpha (growth-related oncogene alpha), but not for NAP-2 (neutrophil-activating protein 2), SDF (stromal-cell-derived factor)-1alpha, PF-4 (platelet factor 4), I-TAC (interferon-gamma-inducible T-cell alpha-chemoattractant), IP-10 (interferon-gamma-inducible protein 10) and MCP-1 (monocyte chemoattractant protein 1). The degradation of two human CXC chemokines in vitro, the high sequence conservation, the immunogenicity of the protein in humans and the shown protection in animal studies suggest that Spy0416 is a promising vaccine candidate for the prevention of infections by S. pyogenes.
Molecular Immunology | 2009
Stephan Segerer; Zoë Johnson; Angelika Rek; Thomas Baltus; Philipp von Hundelshausen; Amanda E. I. Proudfoot; Christian Weber; Peter J. Nelson
Chemokine function in vivo depends on the presentation by structures of the extracellular matrix or on endothelial surfaces. CCL5 contains two clusters of basic amino acid residues ((44)RKNR(47) and (55)KKWVR(59)) implicated in presentation of the protein. While (44)RKNR(47) has been shown to moderate CCL5 binding to glycosaminoglycans (GAGs), no direct role for the basic residues in the so called 50s loop ((55)KKWVR(59)) as a presentation structure has been published to date. In ex vivo studies both regions were found to be necessary for direct tissue binding suggesting a role for (55)KKWVR(59). In vitroT lymphocyte and monocyte induced firm adhesion under flow, as well as leukocyte recruitment to the peritoneal cavity in vivo was reduced in the 50s mutant. The binding of the 50s mutant to endothelial cells was significantly reduced as compared to the wild type protein demonstrated by ELISA. The 50s mutant had little impact on GAG binding in vitro. These data suggest that functional CCL5 presentation is mediated through both the 40s as well as the 50s loop with differential functions of the two loops of clusters of basic residues.
Biochemistry | 2002
Birgit Goger; Yvonne Halden; Angelika Rek; Roland Mösl; David A Pye; John T. Gallagher
Proteomics | 2007
S. Fabio Falsone; Bernd Gesslbauer; Angelika Rek