Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelika Richter is active.

Publication


Featured researches published by Angelika Richter.


Progress in Neurobiology | 2014

Genetic animal models of dystonia: common features and diversities.

Franziska Richter; Angelika Richter

Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.


Experimental Neurology | 2002

Changes in AMPA Receptor Binding in an Animal Model of Inborn Paroxysmal Dystonia

José N. Nobrega; Roger Raymond; Karen B. L. Barlow; Melanie Hamann; Angelika Richter

Previous pharmacological studies suggested that glutamatergic overactivity contributes to manifestation of dystonic attacks in mutant hamsters (dt(sz)), a model of idiopathic paroxysmal dystonia in which episodes of dystonia occur in response to stress. In the present study, [(3)H]AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor binding was determined by autoradiographic analyses in 41 brain (sub)regions of dt(sz) hamsters under basal conditions, i.e., in the absence of dystonia, and in a group of mutant hamsters that exhibited severe stress-induced dystonic attacks immediately prior to sacrifice. In comparison to nondystonic control hamsters the basal [(3)H]AMPA binding was significantly higher in the ventromedial and ventrolateral caudate putamen, the anterior cingulate cortex, the hippocampus, and the lateral septum of dystonic brains. During dystonic attacks the [(3)H]AMPA binding was significantly lower in the dorsomedial, dorsolateral, and posterior caudate putamen; the ventromedial thalamus; and the frontal cortex of mutant hamsters compared with control animals that were exposed to the same external stimulation. The basal increase in AMPA receptor density within limbic structures may contribute to the susceptibility of stress-inducible dystonic episodes in mutant hamsters. Since AMPA receptor activation is known to cause a fast reduction of the affinity and an internalization of postsynaptic AMPA receptors, the latter finding could reflect a glutamatergic overactivity within the striato-thalamo-cortical circuit during the expression of dystonia, which is in line with previous neurochemical and pharmacological data in dt(sz) hamsters.


Neuroscience | 2013

Persistent changes of corticostriatal plasticity in dtsz mutant hamsters after age-dependent remission of dystonia

Y. Avchalumov; C.E. Volkmann; K. Rückborn; Melanie Hamann; Timo Kirschstein; Angelika Richter; Rüdiger Köhling

Abnormal plasticity in the cortico-basal ganglia-thalamocortical loop has been suggested to represent a key factor in the pathophysiology of dystonia. In a model of primary paroxysmal dystonia, the dt(sz) mutant hamster, previous experiments have shown a strongly increased long-term potentiation (LTP) in comparison to non-dystonic control hamsters. These basal changes, i.e. in the absence of dystonia, were found in young animals at an age of 5 weeks, when the age-dependent dystonia in dt(sz) mutant reaches highest severity. In the present study we examined in corticostriatal slices (1) whether the increases in synaptic plasticity can be modulated by stressful stimuli which induce dystonic episodes in young mutant hamsters, and (2) whether increases of LTP persist after spontaneous remission of dystonia in animals older than 10 weeks. The present data show that in slices of young mutant hamsters the extent of LTP was not influenced by the presence of dystonia: In comparison to age-matched control hamsters, LTP was increased in mutant hamsters independent of preceding stressful stimulation. After remission of dystonia, i.e., in older dt(sz) mutant hamsters >10 weeks, only LTP could be elicited, while in preparations from age-matched control hamsters, either LTP or long-term depression developed, depending on previous behavioral challenge. We conclude that in mature brain, corticostriatal connections have the potential for changes in metaplasticity, while in dt(sz) mutant hamsters this metaplasticity is persistently infringed even though stress-inducible dystonic symptoms are lost.


Molecular therapy. Nucleic acids | 2017

Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson’s Disease

Christin Helmschrodt; Sabrina Höbel; Sandra Schöniger; Anne Bauer; Jana Bonicelli; Marieke Gringmuth; Simone A. Fietz; Achim Aigner; Angelika Richter; Franziska Richter

RNA interference (RNAi)-based strategies that mediate the specific knockdown of target genes by administration of small interfering RNAs (siRNAs) could be applied for treatment of presently incurable neurodegenerative diseases such as Parkinson’s disease. However, inefficient delivery of siRNA into neurons hampers in vivo application of RNAi. We have previously established the 4–12 kDa branched polyethylenimine (PEI) F25-LMW with superior transfection efficacy for delivery of siRNA in vivo. Here, we present that siRNA complexed with this PEI extensively distributes across the CNS down to the lumbar spinal cord after a single intracerebroventricular infusion. siRNA against α-synuclein (SNCA), a pre-synaptic protein that aggregates in Parkinson’s disease, was complexed with PEI F25-LMW and injected into the lateral ventricle of mice overexpressing human wild-type SNCA (Thy1-aSyn mice). Five days after the single injection of 0.75 μg PEI/siRNA, SNCA mRNA expression in the striatum was reduced by 65%, accompanied by reduction of SNCA protein by ∼50%. Mice did not show signs of toxicity or adverse effects. Moreover, ependymocytes and brain parenchyma were completely preserved and free of immune cell invasion, astrogliosis, or microglial activation. Our results support the efficacy and safety of PEI nanoparticle-mediated delivery of siRNA to the brain for therapeutic intervention.


Experimental Neurology | 2017

Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia

Christoph Bode; Franziska Richter; Christine Spröte; Tanja Brigadski; Anne Bauer; Simone A. Fietz; Jean-Marc Fritschy; Angelika Richter

&NA; GABAergic disinhibition has been suggested to play a critical role in the pathophysiology of several basal ganglia disorders, including dystonia, a common movement disorder. Previous studies have shown a deficit of striatal GABAergic interneurons (IN) in the dtsz mutant hamster, one of the few phenotypic animal models of dystonia. However, mechanisms underlying this deficit are largely unknown. In the present study, we investigated the migration and maturation of striatal IN during postnatal development (18 days of age) and at age of highest severity of dystonia (33 days of age) in this hamster model. In line with previous findings, the density of GAD67‐positive IN and the level of parvalbumin mRNA, a marker for fast spiking GABAergic IN, were lower in the dtsz mutant than in control hamsters. However, an unaltered density of Nkx2.1 labeled cells and Nkx2.1 mRNA level suggested that the migration of GABAergic IN into the striatum was not retarded. Therefore, different factors that indicate maturation of GABAergic IN were determined. While mRNA of the KCC2 cation/chloride transporters and the cytosolic carboanhydrase VII, used as markers for the so called GABA switch, as well as BDNF were unaltered, we found a reduced number of IN expressing the alpha1 subunit of the GABAA‐receptor (37.5%) in dtsz hamsters at an age of 33 days, but not after spontaneous remission of dystonia at an age of 90 days. Since IN shift expression from alpha2 to alpha1 subunits during postnatal maturation, this result together with a decreased parvalbumin mRNA expression suggest a delayed maturation of striatal GABAergic IN in this animal model, which might underlie abnormal neuronal activity and striatal plasticity. HighlightsStriatal parvalbumin expression is decreased in the dystonic hamster model.Density of Nkx2.1 labeled striatal interneurons was unchanged in dystonic hamsters.BDNF and GABA‐switch expression levels were not altered in dystonic hamsters.GABAAR‐&agr;1 positive striatal neurons were transiently reduced in dystonic hamsters.Retarded interneuron maturation could be involved in pathophysiology of dystonia.


Behavioural Brain Research | 2016

The novel adaptive rotating beam test unmasks sensorimotor impairments in a transgenic mouse model of Parkinson’s disease

Julia Gerstenberger; Anne Bauer; Christin Helmschrodt; Angelika Richter; Franziska Richter

Development of disease modifying therapeutics for Parkinsons disease (PD), the second most common neurodegenerative disorder, relies on availability of animal models which recapitulate the disease hallmarks. Only few transgenic mouse models, which mimic overexpression of alpha-synuclein, show dopamine loss, behavioral impairments and protein aggregation. Mice overexpressing human wildtype alpha-synuclein under the Thy-1 promotor (Thy1-aSyn) replicate these features. However, female mice do not exhibit a phenotype. This was attributed to a potentially lower transgene expression located on the X chromosome. Here we support that female mice overexpress human wildtype alpha-synuclein only about 1.5 fold in the substantia nigra, compared to about 3 fold in male mice. Since female Thy1-aSyn mice were shown previously to exhibit differences in corticostriatal communication and synaptic plasticity similar to their male counterparts we hypothesized that female mice use compensatory mechanisms and strategies to not show overt motor deficits despite an underlying endophenotype. In order to unmask these deficits we translated recent findings in PD patients that sensory abnormalities can enhance motor dysfunction into a novel behavioral test, the adaptive rotating beam test. We found that under changing sensory input female Thy1-aSyn mice showed an overt phenotype. Our data supports that the integration of sensorimotor information is likely a major contributor to symptoms of movement disorders and that even low levels of overexpression of human wildtype alpha-synuclein has the potential to disrupt processing of these information. The here described adaptive rotating beam test represents a sensitive behavioral test to detect moderate sensorimotor alterations in mouse models.


Frontiers in Veterinary Science | 2015

Dystonia and Paroxysmal Dyskinesias: Under-Recognized Movement Disorders in Domestic Animals? A Comparison with Human Dystonia/Paroxysmal Dyskinesias

Angelika Richter; Melanie Hamann; Jörg Wissel; Holger A. Volk

Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals.


Experimental Neurology | 2014

Role of striatal NMDA receptor subunits in a model of paroxysmal dystonia

Yosef Avchalumov; Svenja E. Sander; Franziska Richter; Katrin Porath; Melanie Hamann; Christoph Bode; Timo Kirschstein; Rüdiger Köhling; Angelika Richter

Dystonia is a movement disorder in which abnormal plasticity in the basal ganglia has been hypothesized to play a critical role. In a model of paroxysmal dystonia, the dt(sz) mutant hamster, previous studies indicated striatal dysfunctions, including an increased long-term potentiation (LTP). Beneficial effects were exerted by subunit-unspecific antagonists at NMDA receptors, which blocked LTP. NR2B subtype selective antagonists aggravated dystonia after systemic treatment in dt(sz) hamsters, suggesting that beneficial effects involved the NR2A receptor subtype. In the present study, NVP-AAM077, an antagonist with preferential activity on NR2A-containing NMDA receptors, exerted significant antidystonic effects in mutant hamsters after systemic administration (20 and 30mg/kg i.p.) and delayed the onset of a dystonic episode after intrastriatal injections (0.12 and 0.24μg). As shown by present electrophysiological examinations in corticostriatal slices of dt(sz) hamsters and non-dystonic control hamsters, NVP-AAM077 (50nM) completely blocked LTP in dt(sz) slices, but did not exert significant effects on LTP in non-dystonic controls. In contrast, the NR2B antagonist Ro 25-6981 (1-10μmol) reduced LTP to a lower extent in dt(sz) mutant hamsters than in control animals. By using quantitative RT-PCR, the NR2A/NR2B ratio was found to be increased in the striatum, but not in the cortex of mutant hamsters in comparison to non-dystonic controls. These data indicate that NR2A-mediated activation may be involved in the pathophysiology of paroxysmal dystonia. Since significant antidystonic effects were observed after systemic administration of NVP-AAM077 already at well tolerated doses, antagonists with preferential activity on NR2A-containing NMDA receptors could be interesting candidates for the treatment of dystonia.


Behavioural Brain Research | 2017

Sensorimotor tests unmask a phenotype in the DYT1 knock-in mouse model of dystonia

Franziska Richter; Julia Gerstenberger; Anne Bauer; Chun Chi Liang; Angelika Richter

HighlightsWe established a behavioural readout for neuronal dysfunction in DYT1 KI mice.DYT1 KI mice exhibited sensorimotor deficits in the adhesive removal test.Deficits were detected in a complex rotating beam test with changing sensory input.Deficits may reflect previously shown cerebellothalamocortical tract alterations. ABSTRACT Hereditary generalized dystonia is often caused by a GAG deletion in TOR1A (DYT1) that encodes for the protein torsinA. Although mutation carriers show alterations in neuronal connectivity and sensorimotor deficits, only 30% develop dystonia. Uncovering the factors triggering the dystonic symptoms and underlying pathophysiology would greatly benefit the development of more effective therapies. In DYT1 knock‐in (KI) mice, the expression of torsinA mutant alters the connectivity of neurons and the function of striatal cholinergic interneurons. We aimed to determine if heterozygous DYT1 KI mice exhibit deficits in behavioural tests that explore the connectivity of the sensory and motor system. DYT1 KI mice were tested in cognitive tests and challenging motor paradigms, followed by the adhesive removal test and the adaptive rotating beam test which both require sensorimotor integration. DYT1 KI mice did not exhibit cognitive deficits and were able to perform similarly to wild type mice even in challenging motor tests with relatively stable sensory input. Conversely, DYT1 KI mice spent more time on sensing and removing an adhesive sticker from the back of the nose; they exhibited difficulty to traverse rotating rods, especially if the surface was smooth and the diameter small. Our observations further support a role of sensorimotor integration in manifestation of this movement disorder. Future studies in DYT1 KI mice will explore the involved neurocircuitry and underlying molecular mechanisms.


Neuroscience | 2017

Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dtsz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics

Melanie Hamann; Jagoda Plank; Franziska Richter; Christoph Bode; Sinisa Smiljanic; Meaghan Creed; José N. Nobrega; Angelika Richter

Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dtsz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dtsz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia.

Collaboration


Dive into the Angelika Richter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Hamann

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge