Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelika Schnieke is active.

Publication


Featured researches published by Angelika Schnieke.


Nature | 2000

Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.

K. J. McCreath; J. Howcroft; Keith H.S. Campbell; Alan Colman; Angelika Schnieke; Alexander Kind

It is over a decade since the first demonstration that mouse embryonic stem cells could be used to transfer a predetermined genetic modification to a whole animal. The extension of this technique to other mammalian species, particularly livestock, might bring numerous biomedical benefits, for example, ablation of xenoreactive transplantation antigens, inactivation of genes responsible for neuropathogenic disease and precise placement of transgenes designed to produce proteins for human therapy. Gene targeting has not yet been achieved in mammals other than mice, however, because functional embryonic stem cells have not been derived. Nuclear transfer from cultured somatic cells provides an alternative means of cell-mediated transgenesis. Here we describe efficient and reproducible gene targeting in fetal fibroblasts to place a therapeutic transgene at the ovine α1(I) procollagen (COL1A1) locus and the production of live sheep by nuclear transfer.


Nature | 1999

Analysis of telomere lengths in cloned sheep

Paul G. Shiels; Alexander Kind; Keith H.S. Campbell; David Waddington; Ian Wilmut; Alan Colman; Angelika Schnieke

The development of nuclear-transfer techniques using cultured somatic cells allows animals to be produced without involving germline cells. This enables us to examine the importance of the repair of chromosome ends (telomeres) in the germ line and to test the telomere hypothesis of ageing.


Nature Genetics | 1999

Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep

Matthew J. Evans; Cagan Gurer; John D. Loike; Ian Wilmut; Angelika Schnieke; Eric A. Schon

Eukaryotic cells contain two distinct genomes. One is located in the nucleus (nDNA) and is transmitted in a mendelian fashion, whereas the other is located in mitochondria (mtDNA) and is transmitted by maternal inheritance. Cloning of mammals typically has been achieved via nuclear transfer, in which a donor somatic cell is fused by electoporation with a recipient enucleated oocyte. During this whole-cell electrofusion, nDNA as well as mtDNA ought to be transferred to the oocyte. Thus, the cloned progeny should harbour mtDNAs from both the donor and recipient cytoplasms, resulting in heteroplasmy. Although the confirmation of nuclear transfer has been established using somatic cell-specific nDNA markers, no similar analysis of the mtDNA genotype has been reported. We report here the origin of the mtDNA in Dolly, the first animal cloned from an established adult somatic cell line, and in nine other nuclear transfer-derived sheep generated from fetal cells. The mtDNA of each of the ten nuclear-transfer sheep was derived exclusively from recipient enucleated oocytes, with no detectable contribution from the respective somatic donor cells. Thus, although these ten sheep are authentic nuclear clones, they are in fact genetic chimaeras, containing somatic cell-derived nuclear DNA but oocyte-derived mtDNA.


Gastroenterology | 2009

E-Cadherin Regulates Metastasis of Pancreatic Cancer In Vivo and Is Suppressed by a SNAIL/HDAC1/HDAC2 Repressor Complex

Johannes von Burstin; Stefan Eser; Mariel C. Paul; Barbara Seidler; Martina Brandl; Marlena Messer; Alexander von Werder; Annegret Schmidt; Jörg Mages; Philipp Pagel; Angelika Schnieke; Roland M. Schmid; Günter Schneider; Dieter Saur

BACKGROUND & AIMS Early metastasis is a hallmark of pancreatic ductal adenocarcinoma and responsible for >90% of pancreatic cancer death. Because little is known about the biology and genetics of the metastatic process, we desired to elucidate molecular pathways mediating pancreatic cancer metastasis in vivo by an unbiased forward genetic approach. METHODS Highly metastatic pancreatic cancer cell populations were selected by serial in vivo passaging of parental cells with low metastatic potential and characterized by global gene expression profiling, chromatin immunoprecipitation, and in vivo metastatic assay. RESULTS In vivo selection of highly metastatic pancreatic cancer cells induced epithelial-mesenchymal transition (EMT), loss of E-cadherin expression, and up-regulation of mesenchymal genes such as Snail. Genetic inactivation of E-cadherin in parental cells induced EMT and increased metastasis in vivo. Silencing of E-cadherin in highly metastatic cells is mediated by a transcriptional repressor complex containing Snail and histone deacetylase 1 (HDAC1) and HDAC2. In line, mesenchymal pancreatic cancer specimens and primary cell lines from genetically engineered Kras(G12D) mice showed HDAC-dependent down-regulation of E-cadherin and high metastatic potential. Finally, transforming growth factor beta-driven E-cadherin silencing and EMT of human pancreatic cancer cells depends on HDAC activity. CONCLUSIONS We provide the first in vivo evidence that HDACs and Snail play an essential role in silencing E-cadherin during the metastatic process of pancreatic cancer cells. These data link the epigenetic HDAC machinery to EMT and metastasis and provide preclinical evidence that HDACs are promising targets for antimetastatic therapy.


Cancer Cell | 2013

Selective Requirement of PI3K/PDK1 Signaling for Kras Oncogene-Driven Pancreatic Cell Plasticity and Cancer

Stefan Eser; Nina Reiff; Marlena Messer; Barbara Seidler; Kathleen Gottschalk; Melanie Dobler; Maren Hieber; Andreas Arbeiter; Sabine Klein; Bo Kong; Christoph W. Michalski; Anna Melissa Schlitter; Irene Esposito; Alexander Kind; Lena Rad; Angelika Schnieke; Manuela Baccarini; Dario R. Alessi; Roland Rad; Roland M. Schmid; Günter Schneider; Dieter Saur

Oncogenic Kras activates a plethora of signaling pathways, but our understanding of critical Ras effectors is still very limited. We show that cell-autonomous phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1), but not Craf, are key effectors of oncogenic Kras in the pancreas, mediating cell plasticity, acinar-to-ductal metaplasia (ADM), and pancreatic ductal adenocarcinoma (PDAC) formation. This contrasts with Kras-driven non-small cell lung cancer, where signaling via Craf, but not PDK1, is an essential tumor-initiating event. These in vivo genetic studies together with pharmacologic treatment studies in models of human ADM and PDAC demonstrate tissue-specific differences of oncogenic Kras signaling and define PI3K/PDK1 as a suitable target for therapeutic intervention specifically in PDAC.


PLOS ONE | 2011

Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases

Tatiana Flisikowska; Sonja Offner; Francesca Ros; Valeria Lifke; Bryan Zeitler; Oswald Rottmann; Anna I Vincent; Lei Zhang; Shirin S. Jenkins; Helmut Niersbach; Alexander Kind; Philip D. Gregory; Angelika Schnieke; Josef Platzer

Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM) locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM+ and IgG+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.


Mechanisms of Development | 2003

Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer

Lorraine E. Young; Angelika Schnieke; Kenneth J. McCreath; Sébastien Wieckowski; Galia Konfortova; Kenneth Fernandes; Grazyna Ptak; Alex J. Kind; Ian Wilmut; Pasqualino Loi; Robert Feil

In different mammalian species, in vitro culture and manipulation can lead to aberrant fetal and peri-natal development. It has been postulated that these diverse abnormalities are caused by epigenetic alterations and that these could affect genes that are regulated by genomic imprinting. To explore this hypothesis relative to somatic cell nuclear transfer in sheep, we investigated whether the ovine H19-IGF2 and IGF2R loci are imprinted and analysed their DNA methylation status in cloned lambs. A comparison between parthenogenetic and control concepti established that imprinting at these two growth-related loci is evolutionarily conserved in sheep. As in humans and mice, IGF2R and H19 comprise differentially methylated regions (DMRs) that are methylated on one of the two parental alleles predominantly. In tongue tissue from 12 out of 13 cloned lambs analysed, the DMR in the second intron of IGF2R had strongly reduced levels of DNA methylation. The DMR located upstream of the ovine H19 gene was found to be similarly organised as in humans and mice, with multiple CTCF binding sites. At this DMR, however, aberrant methylation was observed in only one of the cloned lambs. Although the underlying mechanisms remain to be determined, our data indicate that somatic cell nuclear transfer procedures can lead to epigenetic deregulation at imprinted loci.


Gut | 2009

HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA.

Petra Fritsche; Barbara Seidler; Susanne Schüler; Angelika Schnieke; Martin Göttlicher; Roland M. Schmid; Dieter Saur; Günter Schneider

Background: Although histone deacetylase inhibitors (HDACi) are promising cancer therapeutics regulating proliferation, differentiation and apoptosis, molecular pathways engaged by specific HDAC isoenzymes in cancer are ill defined. Results: In this study we demonstrate that HDAC2 is highly expressed in pancreatic ductal adenocarcinoma (PDAC), especially in undifferentiated tumours. We show that HDAC2, but not HDAC1, confers resistance towards the topoisomerase II inhibitor etoposide in PDAC cells. Correspondingly, the class I selective HDACi valproic acid (VPA) synergises with etoposide to induce apoptosis of PDAC cells. Transcriptome profiling of HDAC2-depleted PDAC cells revealed upregulation of the BH3-only protein NOXA. We show that the epigenetically silenced NOXA gene locus is opened after HDAC2 depletion and that NOXA upregulation is sufficient to sensitise PDAC cells towards etoposide-induced apoptosis. Conclusions: In summary, our data characterise a novel molecular mechanism that links the epigenetic regulator HDAC2 to the regulation of the pro-apoptotic BH3-only protein NOXA in PDAC. Targeting HDAC2 will therefore be a promising strategy to overcome therapeutic resistance of PDAC against chemotherapeutics that induce DNA damage.


Nature Medicine | 2014

A next-generation dual-recombinase system for time and host specific targeting of pancreatic cancer

Nina Schönhuber; Barbara Seidler; Kathleen Schuck; Christian Veltkamp; Christina Schachtler; Magdalena Zukowska; Stefan Eser; Thorsten B. Feyerabend; Mariel C. Paul; Philipp Eser; Sabine Klein; Andrew M. Lowy; Ruby Banerjee; Fangtang Yang; Chang-Lung Lee; Everett J. Moding; David G. Kirsch; Angelika Scheideler; Dario R. Alessi; Ignacio Varela; Allan Bradley; Alexander Kind; Angelika Schnieke; Hans Reimer Rodewald; Roland Rad; Roland M. Schmid; Günter Schneider; Dieter Saur

Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.


International Journal of Cancer | 2008

Highly sensitive detection of early‐stage pancreatic cancer by multimodal near‐infrared molecular imaging in living mice

Johannes von Burstin; Stefan Eser; Barbara Seidler; Alexander Meining; Monther Bajbouj; Jörg Mages; Roland Lang; Alexander Kind; Angelika Schnieke; Roland M. Schmid; Günter Schneider; Dieter Saur

Pancreatic cancer is a serious disease with poor patient outcome, often as a consequence of late diagnosis in advanced stages. This is in large part due to the lack of diagnostic tools for early detection. To address this deficiency, we have investigated novel molecular near‐infrared fluorescent (NIRF) in vivo imaging techniques in clinically relevant mouse models of pancreatic cancer. Genome wide gene expression profiling was used to identify cathepsin cystein proteases and matrix metalloproteinases (MMP) as targets for NIRF imaging. Appropriate protease activatable probes were evaluated for detection of early‐stage pancreatic cancer in mice with orthotopically implanted pancreatic cancer cell lines. Mice with pancreatitis served as controls. Whole body in vivo NIRF imaging using activatable cathepsin sensitive probes specifically detected pancreatic tumors as small as 1–2 mm diameter. Imaging of MMP activity demonstrated high specificity for MMP positive tumors. Intravital flexible confocal fluorescence lasermicroscopy of protease activity enabled specific detection of pancreatic tumors at the cellular level. Importantly, topical application of NIRF‐probes markedly reduced background without altering signal intensity. Taken together, macroscopic and confocal lasermicroscopic molecular in vivo imaging of protease activity is highly sensitive, specific and allows discrimination between normal pancreatic tissue, inflammation and pancreatic cancer. Translation of this approach to the clinic could significantly improve endoscopic and laparoscopic detection of early‐stage pancreatic cancer.

Collaboration


Dive into the Angelika Schnieke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eckard Rehbinder

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Wilmut

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Switonski

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge