Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelika Sturm is active.

Publication


Featured researches published by Angelika Sturm.


PLOS Pathogens | 2014

CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria

Lei Shong Lau; Daniel Fernandez-Ruiz; Vanessa Mollard; Angelika Sturm; Michelle A. Neller; Anton J. Cozijnsen; Julia L. Gregory; Gayle M. Davey; Claerwen M. Jones; Yi-Hsuan Lin; Ashraful Haque; Christian R. Engwerda; Catherine Q. Nie; Diana S. Hansen; Kenneth M. Murphy; Anthony T. Papenfuss; John J. Miles; Scott R. Burrows; Tania F. de Koning-Ward; Geoffrey I. McFadden; Francis R. Carbone; Brendan S. Crabb; William R. Heath

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.


PLOS ONE | 2012

Spatial localisation of actin filaments across developmental stages of the malaria parasite.

Fiona Angrisano; David T. Riglar; Angelika Sturm; Jc Volz; Michael J. Delves; Elizabeth S. Zuccala; Lynne Turnbull; Chaitali Dekiwadia; Maya A. Olshina; Danushka S. Marapana; W. Wei-Lynn Wong; Mollard; Ch Bradin; Christopher J. Tonkin; Peter Gunning; Stuart A. Ralph; Cynthia B. Whitchurch; Re Sinden; Alan F. Cowman; Geoffrey I. McFadden; Jake Baum

Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.


Molecular Microbiology | 2013

The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth

Kathryn Matthews; Ming Kalanon; Scott A. Chisholm; Angelika Sturm; Christopher D. Goodman; Matthew W. A. Dixon; Paul R. Sanders; Thomas Nebl; Fiona W. Fraser; Silvia Haase; Geoffrey I. McFadden; Paul R. Gilson; Brendan S. Crabb; Tania F. de Koning-Ward

Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood‐stage growth. In contrast, the putative thioredoxin‐like protein TRX2 could be deleted, with knockout parasites displaying reduced grow‐rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much‐needed tool to dissect PTEX function.


International Journal for Parasitology | 2012

Malaria parasite colonisation of the mosquito midgut--placing the Plasmodium ookinete centre stage.

Fiona Angrisano; Yan-Hong Tan; Angelika Sturm; Geoffrey I. McFadden; Jake Baum

Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease.


Science | 2016

Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes

Christopher D. Goodman; Josephine E. Siregar; Vanessa Mollard; Joel Vega-Rodríguez; Din Syafruddin; Hiroyuki Matsuoka; Motomichi Matsuzaki; Tomoko Toyama; Angelika Sturm; Anton J. Cozijnsen; Marcelo Jacobs-Lorena; Kiyoshi Kita; Sangkot Marzuki; Geoffrey I. McFadden

Transmission blocked by drug resistance Resistance to the antimalarial drug atovaquone might prove to be this parasites weak spot. Resistance develops rapidly via mutations in the drugs target: the parasites mitochondrial cytochrome b complex. Goodman et al. have discovered that although resistant Plasmodium berghei parasites persist in mice, in blood-sucking malarial mosquitoes, the mutations disable female parasites too much for them to reproduce. The human-specific Plasmodium falciparum can only be investigated experimentally in mosquitoes, but a similar effect was seen. Thus, atovaquone-resistant parasites cannot be transmitted to another mammal or person. Science, this issue p. 349 Atovaquone-resistant Plasmodium berghei do not reproduce in mosquitoes and, hence, are not transmitted. Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase.

Angelika Sturm; Vanessa Mollard; Anton J. Cozijnsen; Christopher D. Goodman; Geoffrey I. McFadden

Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.


Blood | 2015

Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites

Clare M. Smith; Ante Jerkovic; Hervé Puy; Ingrid Winship; Jean-Charles Deybach; Laurent Gouya; Giel G. van Dooren; Christopher D. Goodman; Angelika Sturm; Hana Manceau; Geoffrey I. McFadden; Peter H. David; Odile Mercereau-Puijalon; Gaetan Burgio; Brendan J. McMorran; Simon J. Foote

Many red cell polymorphisms are a result of selective pressure by the malarial parasite. Here, we add another red cell disease to the panoply of erythrocytic changes that give rise to resistance to malaria. Erythrocytes from individuals with erythropoietic protoporphyria (EPP) have low levels of the final enzyme in the heme biosynthetic pathway, ferrochelatase. Cells from these patients are resistant to the growth of Plasmodium falciparum malarial parasites. This phenomenon is due to the absence of ferrochelatase and not an accumulation of substrate, as demonstrated by the normal growth of P falciparum parasites in the EPP phenocopy, X-linked dominant protoporphyria, which has elevated substrate, and normal ferrochelatase levels. This observation was replicated in a mouse strain with a hypomorphic mutation in the murine ferrochelatase gene. The parasite enzyme is not essential for parasite growth as Plasmodium berghei parasites carrying a complete deletion of the ferrochelatase gene grow normally in erythrocytes, which confirms previous studies. That ferrochelatase is essential to parasite growth was confirmed by showing that inhibition of ferrochelatase using the specific competitive inhibitor, N-methylprotoporphyrin, produced a potent growth inhibition effect against cultures of P falciparum. This raises the possibility of targeting human ferrochelatase in a host-directed antimalarial strategy.


Cellular Microbiology | 2015

The Plasmodium translocon of exported proteins component EXP2 is critical for establishing a patent malaria infection in mice

Ming Kalanon; Daniel Y. Bargieri; Angelika Sturm; Kathryn Matthews; Sreejoyee Ghosh; Christopher D. Goodman; Sabine Thiberge; Mollard; Geoffrey I. McFadden; Robert Ménard; de Koning-Ward Tf

Export of most malaria proteins into the erythrocyte cytosol requires the Plasmodium translocon of exported proteins (PTEX) and a cleavable Plasmodium export element (PEXEL). In contrast, the contribution of PTEX in the liver stages and export of liver stage proteins is unknown. Here, using the FLP/FRT conditional mutatagenesis system, we generate transgenic Plasmodium berghei parasites deficient in EXP2, the putative pore‐forming component of PTEX. Our data reveal that EXP2 is important for parasite growth in the liver and critical for parasite transition to the blood, with parasites impaired in their ability to generate a patent blood‐stage infection. Surprisingly, whilst parasites expressing a functional PTEX machinery can efficiently export a PEXEL‐bearing GFP reporter into the erythrocyte cytosol during a blood stage infection, this same reporter aggregates in large accumulations within the confines of the parasitophorous vacuole membrane during hepatocyte growth. Notably HSP101, the putative molecular motor of PTEX, could not be detected during the early liver stages of infection, which may explain why direct protein translocation of this soluble PEXEL‐bearing reporter or indeed native PEXEL proteins into the hepatocyte cytosol has not been observed. This suggests that PTEX function may not be conserved between the blood and liver stages of malaria infection.


Cellular Microbiology | 2017

Characterization of the Plasmodium falciparum and P. berghei glycerol 3-phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast

Melanie J. Shears; James I. MacRae; Vanessa Mollard; Christopher D. Goodman; Angelika Sturm; Lindsey M. Orchard; Manuel Llinás; Malcolm J. McConville; Cyrille Y. Botté; Geoffrey I. McFadden

Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti‐malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3‐phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N‐terminal targeting sequence to GFP and 3′ tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site‐directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3‐phosphate acyltransferase in malaria parasites.


Molecular and Biochemical Parasitology | 2012

A GFP-Actin reporter line to explore microfilament dynamics across the malaria parasite lifecycle

Fiona Angrisano; Michael J. Delves; Angelika Sturm; Vanessa Mollard; Geoffrey I. McFadden; Robert E. Sinden; Jake Baum

Malaria parasite motility relies on an internal parasite actomyosin motor that, when linked to the host cell substrate, propels motile zoites forward. Despite their key role in this process, attempts to visualize actin microfilaments (F-actin) during motility and under native microscopy conditions have not to date been successful. Towards facilitating their visualization we present here a Plasmodium berghei transgenic line in which a green fluorescent protein (GFP)-actin fusion is constitutively expressed through the lifecycle. Focused investigation of the largest motile form, the insect stage ookinete, demonstrates a large cytosolic pool of actin with no obvious F-actin structures. However, following treatment with the actin filament-stabilizing drug Jasplakinolide, we show evidence for concentration of F-actin dynamics in the parasite pellicle and at polar apices. These observations support current models for gliding motility and establish a cellular tool for further exploration of the diverse roles actin is thought to play throughout parasite development.

Collaboration


Dive into the Angelika Sturm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jake Baum

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge