Angelique Todd
World Wide Fund for Nature
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angelique Todd.
Journal of Virology | 2010
Cecile Neel; Lucie Etienne; Yingying Li; Jun Takehisa; Rebecca S. Rudicell; Innocent Ndong Bass; Joseph Moudindo; Aimé Mebenga; Amandine Esteban; Fran Van Heuverswyn; Florian Liegeois; Philip J. Kranzusch; Peter D. Walsh; Crickette M. Sanz; David Morgan; Jean-Bosco N. Ndjango; Jean-Christophe Plantier; Sabrina Locatelli; Mary Katherine Gonder; Fabian H. Leendertz; Christophe Boesch; Angelique Todd; Eric Delaporte; Eitel Mpoudi-Ngole; Beatrice H. Hahn; Martine Peeters
ABSTRACT Chimpanzees and gorillas are the only nonhuman primates known to harbor viruses closely related to HIV-1. Phylogenetic analyses showed that gorillas acquired the simian immunodeficiency virus SIVgor from chimpanzees, and viruses from the SIVcpz/SIVgor lineage have been transmitted to humans on at least four occasions, leading to HIV-1 groups M, N, O, and P. To determine the geographic distribution, prevalence, and species association of SIVgor, we conducted a comprehensive molecular epidemiological survey of wild gorillas in Central Africa. Gorilla fecal samples were collected in the range of western lowland gorillas (n = 2,367) and eastern Grauer gorillas (n = 183) and tested for SIVgor antibodies and nucleic acids. SIVgor antibody-positive samples were identified at 2 sites in Cameroon, with no evidence of infection at 19 other sites, including 3 in the range of the Eastern gorillas. In Cameroon, based on DNA and microsatellite analyses of a subset of samples, we estimated the prevalence of SIVgor to be 1.6% (range, 0% to 4.6%), which is significantly lower than the prevalence of SIVcpzPtt in chimpanzees (5.9%; range, 0% to 32%). All newly identified SIVgor strains formed a monophyletic lineage within the SIVcpz radiation, closely related to HIV-1 groups O and P, and clustered according to their field site of origin. At one site, there was evidence for intergroup transmission and a high intragroup prevalence. These isolated hot spots of SIVgor-infected gorilla communities could serve as a source for human infection. The overall low prevalence and sporadic distribution of SIVgor could suggest a decline of SIVgor in wild populations, but it cannot be excluded that SIVgor is still more prevalent in other parts of the geographical range of gorillas.
Cell Reports | 2016
Andres Gomez; Klara Petrzelkova; Michael B. Burns; Carl J. Yeoman; Katherine R. Amato; Klára Vlčková; David Modry; Angelique Todd; Carolyn A. Jost Robinson; Melissa J. Remis; Manolito Torralba; Elise R. Morton; Juan D. Umaña; Franck Carbonero; H. Rex Gaskins; Karen E. Nelson; Brenda A. Wilson; Rebecca M. Stumpf; Bryan A. White; Steven R. Leigh; Ran Blekhman
To understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways. In contrast, the hunter-gatherer gut shows increased abundance of predicted virulence, amino acid, and vitamin metabolism functions, as well as dominance of lipid and amino-acid-derived metabolites, as determined through metabolomics. Our results demonstrate gradients of traditional subsistence patterns in two neighboring African groups and highlight the adaptability of the microbiome in response to host ecology.
Molecular Ecology | 2015
Andres Gomez; Klara Petrzelkova; Carl J. Yeoman; Klára Vlčková; J. Mrázek; Ingrid Koppova; Franck Carbonero; Alexander V. Ulanov; David Modry; Angelique Todd; Manolito Torralba; Karen E. Nelson; H. Rex Gaskins; Brenda A. Wilson; Rebecca M. Stumpf; Bryan A. White; Steven R. Leigh
The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro‐ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the hosts external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga‐Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.
PLOS ONE | 2013
Bohumil Sak; Klara Petrzelkova; Dana Kvetonova; Anna Mynarova; Kathryn Shutt; Katerina Pomajbíková; Barbora Kalousová; David Modry; Julio Benavides; Angelique Todd; Martin Kváč
Background Infectious diseases pose one of the greatest threats to endangered species, and a risk of gastrointestinal parasite transmission from humans to wildlife has always been considered as a major concern of tourism. Increased anthropogenic impact on primate populations may result in general changes in communities of their parasites, and also in a direct exchange of parasites between humans and primates. Aims To evaluate the impact of close contact with humans on the occurrence of potentially zoonotic protists in great apes, we conducted a long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas at different stages of the habituation process, humans, and other wildlife in Dzanga-Sangha Protected Areas in the Central African Republic. Results We detected Encephalitozoon cuniculi genotypes I and II (7.5%), Enterocytozoon bieneusi genotype D and three novel genotypes (gorilla 1–3) (4.0%), Giardia intestinalis subgroup A II (2.0%) and Cryptosporidium bovis (0.5%) in gorillas, whereas in humans we found only G. intestinalis subgroup A II (2.1%). In other wild and domestic animals we recorded E. cuniculi genotypes I and II (2.1%), G. intestinalis assemblage E (0.5%) and C. muris TS03 (0.5%). Conclusion Due to the non-specificity of E. cuniculi genotypes we conclude that detection of the exact source of E. cuniculi infection is problematic. As Giardia intestinalis was recorded primarily in gorilla groups with closer human contact, we suggest that human-gorilla transmission has occurred. We call attention to a potentially negative impact of habituation on selected pathogens which might occur as a result of the more frequent presence of humans in the vicinity of both gorillas under habituation and habituated gorillas, rather than as a consequence of the close contact with humans, which might be a more traditional assumption. We encourage to observe the sections concerning hygiene from the IUCN best practice guidelines for all sites where increased human-gorilla contact occurs.
PLOS Neglected Tropical Diseases | 2014
Hideo Hasegawa; David Modrý; Masahiro Kitagawa; Kathryn Shutt; Angelique Todd; Barbora Kalousová; Ilona Profousová; Klára J. Petrželková
Background Hookworms are important pathogens of humans. To date, Necator americanus is the sole, known species of the genus Necator infecting humans. In contrast, several Necator species have been described in African great apes and other primates. It has not yet been determined whether primate-originating Necator species are also parasitic in humans. Methodology/Principal Findings The infective larvae of Necator spp. were developed using modified Harada-Mori filter-paper cultures from faeces of humans and great apes inhabiting Dzanga-Sangha Protected Areas, Central African Republic. The first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA and partial cytochrome c oxidase subunit 1 (cox1) gene of mtDNA obtained from the hookworm larvae were sequenced and compared. Three sequence types (I–III) were recognized in the ITS region, and 34 cox1 haplotypes represented three phylogenetic groups (A–C). The combinations determined were I-A, II-B, II-C, III-B and III-C. Combination I-A, corresponding to N. americanus, was demonstrated in humans and western lowland gorillas; II-B and II-C were observed in humans, western lowland gorillas and chimpanzees; III-B and III-C were found only in humans. Pairwise nucleotide difference in the cox1 haplotypes between the groups was more than 8%, while the difference within each group was less than 2.1%. Conclusions/Significance The distinctness of ITS sequence variants and high number of pairwise nucleotide differences among cox1 variants indicate the possible presence of several species of Necator in both humans and great apes. We conclude that Necator hookworms are shared by humans and great apes co-habiting the same tropical forest ecosystems.
American Journal of Primatology | 2014
Tillmann Fünfstück; Milica Arandjelovic; David Morgan; Crickette Sanz; Thomas Breuer; Emma J. Stokes; Patricia Reed; Sarah H. Olson; Kenneth Cameron; Alain Ondzie; Martine Peeters; Hjalmar S. Kühl; Chloé Cipolletta; Angelique Todd; Shelly Masi; Diane M. Doran-Sheehy; Brenda J. Bradley; Linda Vigilant
To understand the evolutionary histories and conservation potential of wild animal species it is useful to assess whether taxa are genetically structured into different populations and identify the underlying factors responsible for any clustering. Landscape features such as rivers may influence genetic population structure, and analysis of structure by sex can further reveal effects of sex‐specific dispersal. Using microsatellite genotypes obtained from noninvasively collected fecal samples we investigated the population structure of 261 western lowland gorillas (WLGs) (Gorilla gorilla gorilla) from seven locations spanning an approximately 37,000 km2 region of mainly continuous rain forest within Central African Republic (CAR), Republic of Congo and Cameroon. We found our sample to consist of two or three significantly differentiated clusters. The boundaries of the clusters coincided with courses of major rivers. Moreover, geographic distance detoured around rivers better‐explained variation in genetic distance than straight line distance. Together these results suggest that major rivers in our study area play an important role in directing WLG gene flow. The number of clusters did not change when males and females were analyzed separately, indicating a lack of greater philopatry in WLG females than males at this scale. Am. J. Primatol. 76:868–878, 2014.
PLOS Neglected Tropical Diseases | 2013
Kateřina Pomajbíková; Miroslav Oborník; Aleš Horák; Klára J. Petrželková; J. Norman Grim; Bruno Levecke; Angelique Todd; Martin Mulama; John Kiyang; David Modrý
Balantidiasis is considered a neglected zoonotic disease with pigs serving as reservoir hosts. However, Balantidium coli has been recorded in many other mammalian species, including primates. Here, we evaluated the genetic diversity of B. coli in non-human primates using two gene markers (SSrDNA and ITS1-5.8SDNA-ITS2). We analyzed 49 isolates of ciliates from fecal samples originating from 11 species of captive and wild primates, domestic pigs and wild boar. The phylogenetic trees were computed using Bayesian inference and Maximum likelihood. Balantidium entozoon from edible frog and Buxtonella sulcata from cattle were included in the analyses as the closest relatives of B. coli, as well as reference sequences of vestibuliferids. The SSrDNA tree showed the same phylogenetic diversification of B. coli at genus level as the tree constructed based on the ITS region. Based on the polymorphism of SSrDNA sequences, the type species of the genus, namely B. entozoon, appeared to be phylogenetically distinct from B. coli. Thus, we propose a new genus Neobalantidium for the homeothermic clade. Moreover, several isolates from both captive and wild primates (excluding great apes) clustered with B. sulcata with high support, suggesting the existence of a new species within this genus. The cysts of Buxtonella and Neobalantidium are morphologically indistinguishable and the presence of Buxtonella-like ciliates in primates opens the question about possible occurrence of these pathogens in humans.
PLOS ONE | 2012
Shelly Masi; Sophie Chauffour; Odile Bain; Angelique Todd; Jacques Guillot; Sabrina Krief
Among factors affecting animal health, environmental influences may directly or indirectly impact host nutritional condition, fecundity, and their degree of parasitism. Our closest relatives, the great apes, are all endangered and particularly sensitive to infectious diseases. Both chimpanzees and western gorillas experience large seasonal variations in fruit availability but only western gorillas accordingly show large changes in their degree of frugivory. The aim of this study is to investigate and compare factors affecting health (through records of clinical signs, urine, and faecal samples) of habituated wild ape populations: a community (N = 46 individuals) of chimpanzees (Pan troglodytes) in Kanyawara, Kibale National Park (Uganda), and a western gorilla (G. gorilla) group (N = 13) in Bai Hokou in the Dzanga-Ndoki National Park (Central African Republic). Ape health monitoring was carried out in the wet and dry seasons (chimpanzees: July–December 2006; gorillas: April–July 2008 and December 2008–February 2009). Compared to chimpanzees, western gorillas were shown to have marginally greater parasite diversity, higher prevalence and intensity of both parasite and urine infections, and lower occurrence of diarrhea and wounds. Parasite infections (prevalence and load), but not abnormal urine parameters, were significantly higher during the dry season of the study period for western gorillas, who thus appeared more affected by the large temporal changes in the environment in comparison to chimpanzees. Infant gorillas were the most susceptible among all the age/sex classes (of both apes) having much more intense infections and urine blood concentrations, again during the dry season. Long term studies are needed to confirm the influence of seasonal factors on health and parasitism of these great apes. However, this study suggest climate change and forest fragmentation leading to potentially larger seasonal fluctuations of the environment may affect patterns of ape parasitism and further exacerbate health impacts on great ape populations that live in highly seasonal habitats.
The ISME Journal | 2016
Andres Gomez; Jessica M. Rothman; Klara Petrzelkova; Carl J. Yeoman; Klára Vlčková; Juan D. Umaña; Monica Carr; David Modry; Angelique Todd; Manolito Torralba; Karen E. Nelson; Rebecca M. Stumpf; Brenda A. Wilson; Ran Blekhman; Bryan A. White; Steven R. Leigh
Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species’ microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.
International Journal of Primatology | 2008
Angelique Todd; Hjalmar S. Kuehl; Chloé Cipolletta; Peter D. Walsh
There is an urgent need for information on western gorilla population sizes and distribution to improve present and plan future conservation actions. Researchers traditionally have estimated gorilla densities on the basis of nest counts despite demonstrated variation in nest production and decay rates. The variation may lead to large biases in estimates of gorilla abundance. We investigated the use of an alternate index of gorilla abundance, via defecation data collected from habituated gorillas at Bai Hokou, Central African Republic. Our sample of 274/370 defecation events/dung piles produced a production rate of ca. 5 dung piles/d: comparable to previous estimates based on much smaller sample sizes. Heuristic models that failed to account for imperfect dung pile detection produced a lower defecation rate estimate than that of a maximum likelihood model that explicitly modeled detection probability. Generalized linear modeling (GLM) showed that dung pile production rate was strongly linked to rainfall, suggesting that failure to correct for seasonal variation in dung pile production rates could lead to substantial biases in gorilla abundance estimates. In our study, failing to distinguish between the number of defecation events and the number of dung piles produced would lead to a ca. 31% overestimate of true gorilla numbers. The use of dung as an index of gorilla abundance shows potential, but more fieldwork and modeling on seasonal variation in dung production rates is required.
Collaboration
Dive into the Angelique Todd's collaboration.
University of Veterinary and Pharmaceutical Sciences Brno
View shared research outputsUniversity of Veterinary and Pharmaceutical Sciences Brno
View shared research outputs