Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelo L. Vescovi is active.

Publication


Featured researches published by Angelo L. Vescovi.


Cancer Research | 2004

Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.

Rossella Galli; Elena Binda; Ugo Orfanelli; Barbara Cipelletti; Angela Gritti; Simona De Vitis; Roberta Fiocco; Chiara Foroni; Francesco DiMeco; Angelo L. Vescovi

Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.


Nature | 2003

Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis

Stefano Pluchino; Angelo Quattrini; Elena Brambilla; Angela Gritti; Giuliana Salani; Giorgia Dina; Rossella Galli; Ubaldo Del Carro; Stefano Amadio; Alessandra Bergami; Roberto Furlan; Giancarlo Comi; Angelo L. Vescovi; Gianvito Martino

Widespread demyelination and axonal loss are the pathological hallmarks of multiple sclerosis. The multifocal nature of this chronic inflammatory disease of the central nervous system complicates cellular therapy and puts emphasis on both the donor cell origin and the route of cell transplantation. We established syngenic adult neural stem cell cultures and injected them into an animal model of multiple sclerosis—experimental autoimmune encephalomyelitis (EAE) in the mouse—either intravenously or intracerebroventricularly. In both cases, significant numbers of donor cells entered into demyelinating areas of the central nervous system and differentiated into mature brain cells. Within these areas, oligodendrocyte progenitors markedly increased, with many of them being of donor origin and actively remyelinating axons. Furthermore, a significant reduction of astrogliosis and a marked decrease in the extent of demyelination and axonal loss were observed in transplanted animals. The functional impairment caused by EAE was almost abolished in transplanted mice, both clinically and neurophysiologically. Thus, adult neural precursor cells promote multifocal remyelination and functional recovery after intravenous or intrathecal injection in a chronic model of multiple sclerosis.


Nature | 2006

Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells

Sara Piccirillo; Brent A. Reynolds; N. Zanetti; Giuseppe Lamorte; E. Binda; G. Broggi; H. Brem; Alessandro Olivi; Francesco DiMeco; Angelo L. Vescovi

Transformed, oncogenic precursors, possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours, have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs), amongst which BMP4 elicits the strongest effect, trigger a significant reduction in the stem-like, tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly, in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation, and increased expression of markers of neural differentiation, with no effect on cell viability. The concomitant reduction in clonogenic ability, in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP–BMPR signalling system—which controls the activity of normal brain stem cells—may also act as a key inhibitory regulator of tumour-initiating, stem-like cells from GBMs and the results also identify BMP4 as a novel, non-cytotoxic therapeutic effector, which may be used to prevent growth and recurrence of GBMs in humans.


Nature Neuroscience | 2001

CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity.

Paola Bezzi; María Domercq; Liliana Brambilla; Rossella Galli; Dominique Schols; Erik De Clercq; Angelo L. Vescovi; Giacinto Bagetta; George Kollias; Jacopo Meldolesi; Andrea Volterra

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-α (TNFα). Autocrine/paracrine TNFα-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte–microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia–glia and glia–neuron communication that is relevant to both normal brain function and neurodegenerative diseases.


Nature Reviews Cancer | 2006

Brain tumour stem cells

Angelo L. Vescovi; Rossella Galli; Brent A. Reynolds

The dogma that the genesis of new cells is a negligible event in the adult mammalian brain has long influenced our perception and understanding of the origin and development of CNS tumours. The discovery that new neurons and glia are produced throughout life from neural stem cells provides new possibilities for the candidate cells of origin of CNS neoplasias. The emerging hypothesis is that alterations in the cellular and genetic mechanisms that control adult neurogenesis might contribute to brain tumorigenesis, thereby allowing the identification of new therapeutic strategies.


Experimental Neurology | 1999

Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation

Angelo L. Vescovi; Eugenio Parati; Angela Gritti; Paule Poulin; Marina Ferrario; Enzo Wanke; Paola Frölichsthal-Schoeller; Lidia Cova; Mayi Arcellana-Panlilio; Augusto Colombo; Rossella Galli

Stem cells that can give rise to neurons, astroglia, and oligodendroglia have been found in the developing and adult central nervous system (CNS) of rodents. Yet, their existence within the human brain has not been documented, and the isolation and characterization of multipotent embryonic human neural stem cells have proven difficult to accomplish. We show that the developing human CNS embodies multipotent precursors that differ from their murine counterpart in that they require simultaneous, synergistic stimulation by both epidermal and fibroblast growth factor-2 to exhibit critical stem cell characteristics. Clonal analysis demonstrates that human C NS stem cells are multipotent and differentiate spontaneously into neurons, astrocytes, and oligodendrocytes when growth factors are removed. Subcloning and population analysis show their extensive self-renewal capacity and functional stability, their ability to maintain a steady growth profile, their multipotency, and a constant potential for neuronal differentiation for more than 2 years. The neurons generated by human stem cells over this period of time are electrophysiologically active. These cells are also cryopreservable. Finally, we demonstrate that the neuronal and glial progeny of long-term cultured human CNS stem cells can effectively survive transplantation into the lesioned striatum of adult rats. Tumor formation is not observed, even in immunodeficient hosts. Hence, as a consequence of their inherent biology, human CNS stem cells can establish stable, transplantable cell lines by epigenetic stimulation. These lines represent a renewable source of neurons and glia and may significantly facilitate research on human neurogenesis and the development of clinical neural transplantation.


Trends in Neurosciences | 1996

Is there a neural stem cell in the mammalian forebrain

Samuel Weiss; Brent A. Reynolds; Angelo L. Vescovi; Cindi M. Morshead; Constance G. Craig; Derek van der Kooy

Neural precursor cells have been of interest historically as the building blocks of the embryonic CNS and, most recently, as substrates for restorative neurological approaches. The majority of previous in vitro studies of the regulation of neural-cell proliferation by polypeptide growth factors, and in vivo studies of neural lineage, argue for the presence of precursors with limited proliferative or lineage potential in the mammalian CNS. This is in contrast to renewable tissues, such as the blood or immune system, skin epithelium and epithelium of the small intestinal crypts, which contain specialized, self-renewing cells known as stem cells. However, recent in vitro and in vivo studies from our and other laboratories lead us to conclude that neural stem cells, with self-renewal and multilineage potential, are present in the embryonic through to adult mammalian forebrain.


Stem Cells | 2007

Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma

Eli E. Bar; Aneeka Chaudhry; Alex Lin; Xing Fan; Karisa C. Schreck; William Matsui; Sara Piccirillo; Angelo L. Vescovi; Francesco DiMeco; Alessandro Olivi; Charles G. Eberhart

Brain tumors can arise following deregulation of signaling pathways normally activated during brain development and may derive from neural stem cells. Given the requirement for Hedgehog in non‐neoplastic stem cells, we investigated whether Hedgehog blockade could target the stem‐like population in glioblastoma multiforme (GBM). We found that Gli1, a key Hedgehog pathway target, was highly expressed in 5 of 19 primary GBM and in 4 of 7 GBM cell lines. Shh ligand was expressed in some primary tumors, and in GBM‐derived neurospheres, suggesting a potential mechanism for pathway activation. Hedgehog pathway blockade by cyclopamine caused a 40%–60% reduction in growth of adherent glioma lines highly expressing Gli1 but not in those lacking evidence of pathway activity. When GBM‐derived neurospheres were treated with cyclopamine and then dissociated and seeded in media lacking the inhibitor, no new neurospheres formed, suggesting that the clonogenic cancer stem cells had been depleted. Consistent with this hypothesis, the stem‐like fraction in gliomas marked by both aldehyde dehydrogenase activity and Hoechst dye excretion (side population) was significantly reduced or eliminated by cyclopamine. In contrast, we found that radiation treatment of our GBM neurospheres increased the percentage of these stem‐like cells, suggesting that this standard therapy preferentially targets better‐differentiated neoplastic cells. Most importantly, viable GBM cells injected intracranially following Hedgehog blockade were no longer able to form tumors in athymic mice, indicating that a cancer stem cell population critical for ongoing growth had been removed.


Nature Neuroscience | 2000

Skeletal myogenic potential of human and mouse neural stem cells

Rossella Galli; Ugo Borello; Angela Gritti; M. Giulia Minasi; Christopher R. Bjornson; Marcello Coletta; Marina Mora; M. Gabriella Cusella De Angelis; Roberta Fiocco; Giulio Cossu; Angelo L. Vescovi

Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues.


Stem Cells | 2009

NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts

Xing Fan; Leila Khaki; Thant S. Zhu; Mary E. Soules; Caroline E. Talsma; Naheed Gul; Cheryl M. Koh; Jiangyang Zhang; Yue-Ming Li; Jarek Maciaczyk; Guido Nikkhah; Francesco DiMeco; Sara Piccirillo; Angelo L. Vescovi; Charles G. Eberhart

Cancer stem cells (CSCs) are thought to be critical for the engraftment and long‐term growth of many tumors, including glioblastoma (GBM). The cells are at least partially spared by traditional chemotherapies and radiation therapies, and finding new treatments that can target CSCs may be critical for improving patient survival. It has been shown that the NOTCH signaling pathway regulates normal stem cells in the brain, and that GBMs contain stem‐like cells with higher NOTCH activity. We therefore used low‐passage and established GBM‐derived neurosphere cultures to examine the overall requirement for NOTCH activity, and also examined the effects on tumor cells expressing stem cell markers. NOTCH blockade by γ‐secretase inhibitors (GSIs) reduced neurosphere growth and clonogenicity in vitro, whereas expression of an active form of NOTCH2 increased tumor growth. The putative CSC markers CD133, NESTIN, BMI1, and OLIG2 were reduced following NOTCH blockade. When equal numbers of viable cells pretreated with either vehicle (dimethyl sulfoxide) or GSI were injected subcutaneously into nude mice, the former always formed tumors, whereas the latter did not. In vivo delivery of GSI by implantation of drug‐impregnated polymer beads also effectively blocked tumor growth, and significantly prolonged survival, albeit in a relatively small cohort of animals. We found that NOTCH pathway inhibition appears to deplete stem‐like cancer cells through reduced proliferation and increased apoptosis associated with decreased AKT and STAT3 phosphorylation. In summary, we demonstrate that NOTCH pathway blockade depletes stem‐like cells in GBMs, suggesting that GSIs may be useful as chemotherapeutic reagents to target CSCs in malignant gliomas. STEM CELLS 2010;28:5–16

Collaboration


Dive into the Angelo L. Vescovi's collaboration.

Top Co-Authors

Avatar

Angela Gritti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Rossella Galli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elena Binda

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Lidia De Filippis

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Gelain

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Lamorte

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annunziato Mangiola

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge