Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelo Palmigiano is active.

Publication


Featured researches published by Angelo Palmigiano.


The Journal of Neuroscience | 2009

β-Amyloid Monomers Are Neuroprotective

Maria Laura Giuffrida; Filippo Caraci; Bruno Pignataro; Sebastiano Cataldo; Paolo De Bona; Valeria Bruno; Gemma Molinaro; Giuseppe Pappalardo; Angela Messina; Angelo Palmigiano; Domenico Garozzo; Ferdinando Nicoletti; Enrico Rizzarelli; Agata Copani

The 42-aa-long β-amyloid protein—Aβ1-42—is thought to play a central role in the pathogenesis of Alzheimers disease (AD) (Walsh and Selkoe, 2007). Data from AD brain (Shankar et al., 2008), transgenic APP (amyloid precursor protein)-overexpressing mice (Lesné et al., 2006), and neuronal cultures treated with synthetic Aβ peptides (Lambert et al., 1998) indicate that self-association of Aβ1-42 monomers into soluble oligomers is required for neurotoxicity. The function of monomeric Aβ1-42 is unknown. The evidence that Aβ1-42 is present in the brain and CSF of normal individuals suggests that the peptide is physiologically active (Shoji, 2002). Here we show that synthetic Aβ1-42 monomers support the survival of developing neurons under conditions of trophic deprivation and protect mature neurons against excitotoxic death, a process that contributes to the overall neurodegeneration associated with AD. The neuroprotective action of Aβ1-42 monomers was mediated by the activation of the PI-3-K (phosphatidylinositol-3-kinase) pathway, and involved the stimulation of IGF-1 (insulin-like growth factor-1) receptors and/or other receptors of the insulin superfamily. Interestingly, monomers of Aβ1-42 carrying the Arctic mutation (E22G) associated with familiar AD (Nilsberth et al., 2001) were not neuroprotective. We suggest that pathological aggregation of Aβ1-42 may also cause neurodegeneration by depriving neurons of the protective activity of Aβ1-42 monomers. This “loss-of-function” hypothesis of neuronal death should be taken into consideration when designing therapies aimed at reducing Aβ burden.


Nature Communications | 2014

Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes

Alba Silipo; Giuseppe Vitiello; Djamel Gully; Luisa Sturiale; Clémence Chaintreuil; Joël Fardoux; Daniel Gargani; Hae In Lee; Gargi Kulkarni; Nicolas Busset; Roberta Marchetti; Angelo Palmigiano; Herman Moll; Regina Engel; Rosa Lanzetta; Luigi Paduano; Michelangelo Parrilli; Woo Suk Chang; Otto Holst; Dianne K. Newman; Domenico Garozzo; Gerardino D'Errico; Eric Giraud; Antonio Molinaro

Lipopolysaccharides (LPSs) are major components of the outer membrane of Gram-negative bacteria and are essential for their growth and survival. They act as a structural barrier and play an important role in the interaction with eukaryotic hosts. Here we demonstrate that a photosynthetic Bradyrhizobium strain, symbiont of Aeschynomene legumes, synthesizes a unique LPS bearing a hopanoid covalently attached to lipid A. Biophysical analyses of reconstituted liposomes indicate that this hopanoid-lipid A structure reinforces the stability and rigidity of the outer membrane. In addition, the bacterium produces other hopanoid molecules not linked to LPS. A hopanoid-deficient strain, lacking a squalene hopene cyclase, displays increased sensitivity to stressful conditions and reduced ability to survive intracellularly in the host plant. This unusual combination of hopanoid and LPS molecules may represent an adaptation to optimize bacterial survival in both free-living and symbiotic states.


Proteomics | 2008

Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS.

Luisa Sturiale; Rita Barone; Angelo Palmigiano; Célestin Nsibu Ndosimao; Paz Briones; Maciej Adamowicz; Jaak Jaeken; Domenico Garozzo

This study applied yolk immunoglobulins immunoaffinity separation and MALDI‐TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and α1‐antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high‐quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N‐glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N‐glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG‐Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.


Journal of Mass Spectrometry | 2011

Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides.

Luisa Sturiale; Angelo Palmigiano; Alba Silipo; Yuriy A. Knirel; Andrei P. Anisimov; Rosa Lanzetta; Michelangelo Parrilli; Antonio Molinaro; Domenico Garozzo

Lipooligosaccharides (LOS) are powerful Gram-negative glycolipids that evade the immune system and invade host animal and vegetal cells. The structural elucidation of LOS is pivotal to understanding the mechanisms of infection at the molecular level. The amphiphilic nature of LOS has been the main obstacle for structural analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our approach has resolved this important issue and has permitted us to obtain reflectron MALDI mass spectra of LOS to reveal the fine chemical structure with minimal structural variations. The high-quality MALDI mass spectra show LOS species characteristic of molecular ions and defined fragments due to decay in the ion source. The in-source decay yields B-type ions, which correspond to core oligosaccharide(s), and Y-type ions, which are related to lipid A unit(s). MALDI tandem time-of-flight (TOF/TOF) MS of lipid A allowed for the elucidation of its structure directly from purified intact LOS without the need for any chemical manipulations. These findings constitute a significant advancement in the analysis of such an important biomolecule by MALDI MS.


Journal of Proteomics | 2012

Glycomics of pediatric and adulthood diseases of the central nervous system

Rita Barone; Luisa Sturiale; Angelo Palmigiano; Mario Zappia; Domenico Garozzo

Glycosylation consists in the covalent linkage of a carbohydrate structure to membrane bound and secreted glycoconjugates. It is a common post-translational modification that serves multiple functions in cell differentiation, signaling and intercellular communication. Unlike DNA/RNA/protein, the addition of complex carbohydrates is not-template driven and it is conceivable that both genetics and environmental factors might interact to influence glycosylation machinery in several pathological processes. Over the last few decades, the recognition of Congenital Disorders of Glycosylation (CDG) as an increasing number of genetic diseases of glycosylation with almost constant nervous system involvement, dramatically illustrated the consequences of abnormal glycosylation as improper CNS development and function. In addition, CDG recognition contributed to postulate that aberrant glycosylation processes might play a role in multifactorial, complex CNS diseases. On this context, CNS glycomics explores the effects of possible aberrant glycosylation to identify potential glyco-biomarkers useful for the diagnosis and ultimately for potential intervention strategies in neurological diseases. Up to date, CNS glycomics is an emerging, still uncharted area because of the specificity of CNS glycosylation, the complexity of the neurological disorders and for the inaccessibility and invasiveness of disease relevant samples. Here we review current knowledge on clinical glycomics of nervous system diseases, starting with CDG to include those pediatric and adulthood neuropsychiatric diseases where some evidences suggest that multifactor determinants converge to dysregulate glycosylation. Conventional and mass spectrometry-based high throughput technology for glyco-biomarker detection in CNS diseases is reported.


Journal of Proteomics | 2016

CSF N-glycoproteomics for early diagnosis in Alzheimer's disease

Angelo Palmigiano; Rita Barone; Luisa Sturiale; Cristina Sanfilippo; Rosaria Ornella Bua; Donata Agata Romeo; Angela Messina; Maria Luisa Capuana; Tiziana Maci; Francesco Le Pira; Mario Zappia; Domenico Garozzo

This work aims at exploring the human CSF (Cerebrospinal fluid) N-glycome by MALDI MS techniques, in order to assess specific glycosylation pattern(s) in patients with Alzheimers disease (n:24) and in subjects with mild cognitive impairment (MCI) (n:11), these last as potential AD patients at a pre-dementia stage. For comparison, 21 healthy controls were studied. We identified a group of AD and MCI subjects (about 40-50% of the studied sample) showing significant alteration of CSF N-glycome profiling, consisting of a decrease in the overall sialylation degree and an increase in species bearing bisecting GlcNAc. Noteworthy, all the MCI patients that converted to AD within the clinical follow-up, had an abnormal CSF glycosylation profile. Based on the studied cohort, CSF glycosylation changes may occur before an AD clinical onset. Previous studies specifically focused on the key role of glycosyltransferase GnT-III on AD-pathogenesis, addressing the patho-mechanism to specific sugar modification of BACE-1 glycoprotein with bisecting GlcNAc. Our patients addressed protein N-glycosylation changes at an early phase of the whole biomolecular misregulation on AD, pointing to CSF N-glycome analyses as promising tool to enhance early detection of AD and also suggesting alternative therapeutics target molecules, such as specific glyco-enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans

Cristina De Castro; Antonio Molinaro; Francesco Piacente; James R. Gurnon; Luisa Sturiale; Angelo Palmigiano; Rosa Lanzetta; Michelangelo Parrilli; Domenico Garozzo; Michela Tonetti; James L. Van Etten

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.


Frontiers in Immunology | 2015

Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

Kirill V. Korneev; Nikolay P. Arbatsky; Antonio Molinaro; Angelo Palmigiano; Rima Z. Shaikhutdinova; Mikhail M. Shneider; Gerald B. Pier; Anna N. Kondakova; Ekaterina N. Sviriaeva; Luisa Sturiale; Domenico Garozzo; Andrey A. Kruglov; Sergei A. Nedospasov; Marina S. Drutskaya; Yuriy A. Knirel; Dmitry V. Kuprash

Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation.


Angewandte Chemie | 2016

N-Linked Glycans of Chloroviruses Sharing a Core Architecture without Precedent.

Cristina De Castro; Immacolata Speciale; Garry A. Duncan; David D. Dunigan; Irina V. Agarkova; Rosa Lanzetta; Luisa Sturiale; Angelo Palmigiano; Domenico Garozzo; Antonio Molinaro; Michela Tonetti; James L. Van Etten

N-glycosylation is a fundamental modification of proteins and exists in the three domains of life and in some viruses, including the chloroviruses, for which a new type of core N-glycan is herein described. This N-glycan core structure, common to all chloroviruses, is a pentasaccharide with a β-glucose linked to an asparagine residue which is not located in the typical sequon N-X-T/S. The glucose is linked to a terminal xylose unit and a hyperbranched fucose, which is in turn substituted with a terminal galactose and a second xylose residue. The third position of the fucose unit is always linked to a rhamnose, which is a semiconserved element because its absolute configuration is virus-dependent. Additional decorations occur on this core N-glycan and represent a molecular signature for each chlorovirus.


Carbohydrate Research | 2016

The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice

Flaviana Di Lorenzo; Angelo Palmigiano; Alba Silipo; Yoshitake Desaki; Domenico Garozzo; Rosa Lanzetta; Naoto Shibuya; Antonio Molinaro

The structure of the lipooligosaccharide (LOS) from the rice pathogen Xanthomonas oryzae pv. oryzae has been elucidated. The characterization of the core oligosaccharide structure was obtained by the employment of two chemical degradation protocols and by analysis of the products via NMR spectroscopy. The structure of the lipid A portion was achieved by MALDI mass spectrometry analysis on purified lipid A. The LOS from Xanthomonas oryzae pv. oryzae revealed to possess the same core structure of Xanthomonas campestris pv. campestris and interesting novel features on its lipid A domain. The evaluation of the biological activity of both LOS and isolated lipid A was also executed.

Collaboration


Dive into the Angelo Palmigiano's collaboration.

Top Co-Authors

Avatar

Domenico Garozzo

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Luisa Sturiale

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Antonio Molinaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alba Silipo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Flaviana Di Lorenzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosa Lanzetta

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge