Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angelo Vozza is active.

Publication


Featured researches published by Angelo Vozza.


Proceedings of the National Academy of Sciences of the United States of America | 2014

UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation

Angelo Vozza; Giovanni Parisi; Francesco De Leonardis; Francesco M. Lasorsa; Alessandra Castegna; Daniela Amorese; Raffaele Marmo; Valeria Mariajolanda Calcagnile; Luigi Palmieri; Daniel Ricquier; Eleonora Paradies; Pasquale Scarcia; Ferdinando Palmieri; Frédéric Bouillaud; Giuseppe Fiermonte

Significance Mitochondrial carriers constitute a large family of transport proteins that play important roles in the intracellular translocation of metabolites, nucleotides, and coenzymes. Despite considerable research efforts, the biochemical function of Uncoupling protein 2 (UCP2), a member of the mitochondrial carrier family reported to be involved in numerous pathologies, is still elusive. Here we show that UCP2 catalyzes an exchange of malate, oxaloacetate, and aspartate for phosphate, and that it exports C4 metabolites from mitochondria to the cytosol in vivo. Our findings also provide evidence that UCP2 activity limits mitochondrial oxidation of glucose and enhances glutaminolysis. These results provide a unique regulatory mechanism in cell bioenergetics and explain the significance of UCP2 levels in metabolic reprogramming occurring under various physiopathological conditions. Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA–producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.


Biochimica et Biophysica Acta | 2000

Identification and functions of new transporters in yeast mitochondria.

Luigi Palmieri; Francesco M. Lasorsa; Angelo Vozza; Gennaro Agrimi; Giuseppe Fiermonte; Michael J. Runswick; John E. Walker; Ferdinando Palmieri

The genome of Saccharomyces cerevisiae encodes 35 putative members of the mitochondrial carrier family. Known members of this family transport substrates and products across the inner membranes of mitochondria. We are attempting to identify the functions of the yeast mitochondrial transporters via high-yield expression in Escherichia coli and/or S. cerevisiae, purification and reconstitution of their protein products into liposomes, where their transport properties are investigated. With this strategy, we have already identified the functions of seven S. cerevisiae gene products, whose structural and functional properties assigned them to the mitochondrial carrier family. The functional information obtained in the reconstituted system and the use of knock-out yeast strains can be usefully exploited for the investigation of the physiological role of individual transporters. Furthermore, the yeast carrier sequences can be used to identify the orthologous proteins in other organisms, including man.


Journal of Cell Biology | 2006

Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA

Delphine Poncet; Anne-Laure Pauleau; Angelo Vozza; Sebastian R. Scholz; Morgane Le Bras; Jean-Jacques Brière; Abdelali Jalil; Ronan Le Moigne; Catherine Brenner; Gabriele Hahn; Ilka Wittig; Hermann Schägger; Christophe Lemaire; Katiuscia Bianchi; Sylvie Souquere; Gérard Pierron; Pierre Rustin; Victor S. Goldmacher; Rosario Rizzuto; Ferdinando Palmieri; Guido Kroemer

Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria–localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death–inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.


The EMBO Journal | 2002

Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate

Carlo M.T. Marobbio; Angelo Vozza; Marilyn Harding; F. Bisaccia; Ferdinando Palmieri; John E. Walker

The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 15 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates and cofactors across the inner membrane. Here the identification of the mitochondrial carrier for the essential cofactor thiamine pyrophosphate (ThPP) is described. The protein has been overexpressed in bacteria, reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, cells lacking the gene for this carrier had reduced levels of ThPP in their mitochondria, and decreased activity of acetolactate synthase, a ThPP‐requiring enzyme found in the organellar matrix. They also required thiamine for growth on fermentative carbon sources.


Molecular Microbiology | 1999

The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source

Luigi Palmieri; Angelo Vozza; Angelika Hönlinger; Klaus Dietmeier; Annamaria Palmisano; Vincenzo Zara; Ferdinando Palmieri

The dicarboxylate carrier (DIC) is an integral membrane protein that catalyses a dicarboxylate–phosphate exchange across the inner mitochondrial membrane. We generated a yeast mutant lacking the gene for the DIC. The deletion mutant failed to grow on acetate or ethanol as sole carbon source but was viable on glucose, galactose, pyruvate, lactate and glycerol. The growth on ethanol or acetate was largely restored by the addition of low concentrations of aspartate, glutamate, fumarate, citrate, oxoglutarate, oxaloacetate and glucose, but not of succinate, leucine and lysine. The expression of the DIC gene in wild‐type yeast was repressed in media containing ethanol or acetate with or without glycerol. These results indicate that the primary function of DIC is to transport cytoplasmic dicarboxylates into the mitochondrial matrix rather than to direct carbon flux to gluconeogenesis by exporting malate from the mitochondria. The ΔDIC mutant may serve as a convenient host for overexpression of DIC and for the demonstration of its correct targeting and assembly.


Molecular Microbiology | 2003

Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae

S. Cavero; Angelo Vozza; A. del Arco; Luigi Palmieri; A. Villa; E. Blanco; Michael J. Runswick; John E. Walker; S. Cerdán; Ferdinando Palmieri; Jorgina Satrústegui

The malate‐aspartate NADH shuttle in mammalian cells requires the activity of the mitochondrial aspartate‐glutamate carrier (AGC). Recently, we identified in man two AGC isoforms, aralar1 and citrin, which are regulated by calcium on the external face of the inner mitochondrial membrane. We have now identified Agc1p as the yeast counterpart of the human AGC. The corresponding gene was overexpressed in bacteria and yeast mitochondria, and the protein was reconstituted in liposomes where it was identified as an aspartate‐glutamate transporter from its transport properties. Furthermore, yeast cells lacking Agc1p were unable to grow on acetate and oleic acid, and had reduced levels of valine, ornithine and citrulline; in contrast they grew on ethanol. Expression of the human AGC isoforms can replace the function of Agc1p. However, unlike its human orthologues, yeast Agc1p catalyses both aspartate‐glutamate exchange and substrate uniport activities. We conclude that Agc1p performs two metabolic roles in Saccharomyces cerevisiae. On the one hand, it functions as a uniporter to supply the mitochondria with glutamate for nitrogen metabolism and ornithine synthesis. On the other, the Agc1p, as an aspartate‐glutamate exchanger, plays a role within the malate‐aspartate NADH shuttle which is critical for the growth of yeast on acetate and fatty acids as carbon sources. These results provide strong evidence of the existence of a malate‐aspartate NADH shuttle in yeast.


Molecular and Cellular Biology | 1996

Yeast mitochondria lacking the phosphate carrier/p32 are blocked in phosphate transport but can import preproteins after regeneration of a membrane potential.

Vincenzo Zara; K Dietmeier; Annamaria Palmisano; Angelo Vozza; J Rassow; Ferdinando Palmieri; N Pfanner

Two different functions have been proposed for the phosphate carrier protein/p32 of Saccharomyces cerevisiae mitochondria: transport of phosphate and requirement for import of precursor proteins into mitochondria. We characterized a yeast mutant lacking the gene for the phosphate carrier/p32 and found both a block in the import of phosphate and a strong reduction in the import of preproteins transported to the mitochondrial inner membrane and matrix. Binding of preproteins to the surface of mutant mitochondria and import of outer membrane proteins were not inhibited, indicating that the inhibition of protein import occurred after the recognition step at the outer membrane. The membrane potential across the inner membrane of the mutant mitochondria was strongly reduced. Restoration of the membrane potential restored preprotein import but did not affect the block of phosphate transport of the mutant mitochondria. We conclude that the inhibition of protein import into mitochondria lacking the phosphate carrier/p32 is indirectly caused by a reduction of the mitochondrial membrane potential (delta(gamma)), and we propose a model that the reduction of delta(psi) is due to the defective phosphate import, suggesting that phosphate transport is the primary function of the phosphate carrier/p32.


FEBS Journal | 2010

The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster.

Domenico Iacopetta; Chiara Carrisi; Giuseppina De Filippis; Valeria Mariajolanda Calcagnile; Anna Rita Cappello; Adele Chimento; Rosita Curcio; Antonella Santoro; Angelo Vozza; Vincenza Dolce; Ferdinando Palmieri; Loredana Capobianco

The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides and cofactors across the inner mitochondrial membrane. The genome of Drosophila melanogaster encodes at least 46 members of this family. Only five of these have been characterized, whereas the transport functions of the remainder cannot be assessed with certainty. In the present study, we report the functional identification of two D. melanogaster genes distantly related to the human and yeast thiamine pyrophosphate carrier (TPC) genes as well as the corresponding expression pattern throughout development. Furthermore, the functional characterization of the D. melanogaster mitochondrial thiamine pyrophosphate carrier protein (DmTpc1p) is described. DmTpc1p was over‐expressed in bacteria, the purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. Reconstituted DmTpc1p transports thiamine pyrophosphate and, to a lesser extent, pyrophosphate, ADP, ATP and other nucleotides. The expression of DmTpc1p in Saccharomyces cerevisiaeTPC1 null mutant abolishes the growth defect on fermentable carbon sources. The main role of DmTpc1p is to import thiamine pyrophosphate into mitochondria by exchange with intramitochondrial ATP and/or ADP.


Biochemical and Biophysical Research Communications | 2009

Transcription of the mitochondrial citrate carrier gene: Identification of a silencer and its binding protein ZNF224

Vito Iacobazzi; Vittoria Infantino; Paolo Convertini; Angelo Vozza; Gennaro Agrimi; Ferdinando Palmieri

In the last few years, we have been functionally characterizing the promoter of the human mitochondrial citrate carrier (CIC). In this study we show that CIC silencer activity extends over 26 bp (-595/-569), which specifically bind a protein present in HepG2 cell nuclear extracts. This transcription factor was purified by DNA affinity and identified as ZNF224. Overexpression of ZNF224 decreases LUC transgene activity in cells transfected with a construct containing the CIC silencer region, whereas ZNF224 silencing activates reporter transcription in cells transfected with the same construct. Moreover, overexpression and silencing of ZNF224 diminishes and enhances, respectively, CIC transcript and protein levels. Finally, ZNF224 is abundantly expressed in fetal tissues contrary to CIC. It is suggested that CIC transcriptional repression by ZNF224 explains, at least in part, the low expression of CIC in fetal tissues in which fatty acid synthesis is low.


Molecular Genetics and Metabolism | 2011

A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): A clinical, molecular, and functional study

Giuseppe Fiermonte; Giovanni Parisi; Diego Martinelli; Francesco De Leonardis; G. Torre; Ciro Leonardo Pierri; Alessia Saccari; Francesco M. Lasorsa; Angelo Vozza; Ferdinando Palmieri; Carlo Dionisi-Vici

Citrin is the liver-specific isoform of the mitochondrial aspartate/glutamate carrier (AGC2). AGC2 deficiency is an autosomal recessive disorder with two age related phenotypes: neonatal intrahepatic cholestasis (NICCD, OMIM#605814) and adult-onset type II citrullinemia (CTLN2, OMIM#603471). NICCD arises within the first few weeks of life resulting in prolonged cholestasis and metabolic abnormalities including aminoacidemia and galactosuria. Usually symptoms disappear within the first year of life, thus making a diagnosis difficult after this time. In this study we report a new Caucasian case of NICCD, a seven week old Romanian boy with prolonged jaundice. Sequencing of the AGC2 gene showed a novel homozygous missense double-nucleotide (doublet) mutation, which produces the change of the glycine at position 437 into glutamate. Functional studies, carried out on the recombinant mutant protein, for the first time demonstrated, that NICCD is caused by a reduced transport activity of AGC2. The presence of AGC2 deficiency in other ethnic groups besides Asian population suggests further consideration for NICCD diagnosis of any neonate with an unexplained cholestasis; a prompt diagnosis is crucial to resolve the metabolic decompensation with an appropriate dietary treatment.

Collaboration


Dive into the Angelo Vozza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Martinelli

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge