Anghel Cernescu
Aalto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anghel Cernescu.
Key Engineering Materials | 2009
Nicolae Faur; Cristina Bortun; Liviu Marsavina; Anghel Cernescu; Otilia Gombosi
The complete dentures are realized by different acrylic resins and different technologies. These materials are fragile and frequently appear crack and fractures of these dentures. Also, theses materials as well as the technologies of performing these dentures are expensive. In order to avoid the ultimate failure of the complete dentures, for each case there is necessary a numerical simulation as a preliminary stage before the effective performance of the denture. In order to realize the numerical simulation of the complete denture there is necessary to know the mechanical and elastic properties of the acrylic resins. This paper presents the results of experimental investigations performed in order to determine the mechanical and elastic properties of complete denture materials. A 3D laser scanner was used for the elaboration of the geometrical model of the complete dentures. In this way, using the reverse engineering technology there was realized a very accurate geometrical model. Finite element analysis was used to estimate the durability of the same complete dentures. The calculation model was finally validated by a fatigue experimental test.
Key Engineering Materials | 2014
Anghel Cernescu; Jani Romanoff; Heikki Remes
During the last period the interest on the sandwich structures has became more favorable due to the strength to weight ratio. In the same manner, in ship building field the lightweight structures became more and more attractive. With increasing the usage fields has increased the need to study the behavior of these structures. In general all the sandwich structures loaded in bending shows an effect of the secondary bending moment. In the case of web core sandwich panels used in ship structures has been observed a pronounced effect of the secondary bending moment on laser welded joints. Considering this, the paper presents an analysis of the fracture strength of laser welded joints of a web core sandwich structure, due to the effect of secondary bending moment. In the first part, the paper analytical formulation of the secondary bending moments and their effect on welded joints. This effect is explained on the basis of angle α defined in the paper and which depends on the thickness of the face plate, the thickness of the web plate and respectively the height. The paper continues with a numerical analysis of the stress and strain state from a web core sandwich beam and where also it is analyzed the effect of the secondary bending moment on the fracture strength of laser welded joints. Based on the carried out study it was observed that for high thickness of the web plate the effect of secondary bending moments is the overloading of the welded joints, instead for small thickness of the web plate the effect of the secondary bending moments can be of the unloading the welded joints. However, a small thickness of the web plate can affect the rigidity of the structure. Therefore, based on this study was proposed a solution to reduce the secondary bending moment without reducing the stiffness of the sandwich panel. The analysis conducted in this paper can be a design criterion for the web core sandwich structures.
International Journal of Structural Integrity | 2014
Anghel Cernescu; Liviu Marsavina; Ion Dumitru
Purpose – The purpose of this paper is to present a methodology for assessing the structural integrity of a tie member from a bucket-wheel excavator, ESRC 470 model, which was in operation for about 20 years. The tie member is made of S355J2N structural steel. Following the period of operation, the occurrence of microcracks which can propagate by fatigue is almost inevitable. It is therefore necessary to analyze the structural integrity and the remaining life of the component analyzed. Design/methodology/approach – In principle, the assessment methodology is based on three steps: first, the evaluation of mechanical properties of the material component; second, a BEM analysis using FRANC 3D software package to estimate the evolution of the stress intensity factor based on crack length and applied stress; third, risk factor estimation and remaining fatigue life predictions based on failure assessment diagram and fatigue damage tolerance concept. Findings – Following the evaluation procedure were made predic...
Key Engineering Materials | 2009
Nicolae Faur; Liviu Marsavina; Anghel Cernescu; Christian Neş; Emanoil Linul
At the stress-strain tests for the overhead electrical conductors stranded in alternate directions (aluminum conductor steel reinforced - ACSR), the locking mode of the specimen ends on the tensile machine represents a difficult problem which if is not correctly solved may seriously influence the results obtained. The stress-strain tests are performed according to standards as the European Standard EN 50182:2001. The specimen must have a length imposed by the conductor diameter, but not less than 10m. During the stress-strain tests the specimen is loaded in steps at successive cycles of loading- unloading (30%, 50%, 70%, 85% of Rated Tensile Stress –RTS). Finally, in order to determine the breaking forces, the conductor is loaded up to total breaking. In these conditions, the test success is decisively influenced by the correct locking of the conductor in the grips. The locking of the conductor ends is usually performed by casting the conductor ends in the gripping devices, after the wires ends reflection. In this paper there is presented a new locking method of the conductor ends by separation of the steel wires from the aluminum ones and their separate winding on two drums with helical groove. The tests performed have confirmed that this method is cheaper, and not influencing the real behavior of the conductor.
Key Engineering Materials | 2008
Camelia Szuhanek; Nicolae Faur; Anghel Cernescu
The objective of this numerical study was to evaluate the stress induced by orthodontic loading in anchorage implants and surrounding tissues. Orthodontic implants were included in this study. 3D geometrical models were constructed and material characteristics were taken from the literature. Finite element models were created based on the geometry and material characteristics of the screws. Orthodontic horizontal loads of 2 N were applied, and the biomechanical parameters were evaluated by colored scales. The highest von Mises values were recorded around the implant neck area and at the bone-implant interface.
ACTA Universitatis Cibiniensis | 2017
Liviu Marsavina; Lucian Rusu; Dan Andrei Șerban; Radu Negru; Anghel Cernescu
Abstract The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.
Solid State Phenomena | 2016
Bianca Cristina Lengyel; Anghel Cernescu; Cristian Sorin Nes
Synthetic leather materials, that have single jersey in their structures, are widely used both for the seat covers of cars and in the case of seats for furniture used in everyday life. To develop constructive and ingenious solutions that increase the durability of these materials in time, it is necessary to know all the requests that these materials have fulfil. In this paper we proposed an analytic study of two synthetic leather materials in terms of resistance to burst of the knits underlying their composite structure.
Solid State Phenomena | 2016
Bianca Cristina Lengyel; Nicolae Faur; Cristian Sorin Nes; Anghel Cernescu
In this study the knitted fabric side of two leather substitute materials was analysed. The two synthetic leather material used are usually fabricated for the use as upholstery in the furniture and automotive industry. The first material has a polyurethane (PU) matrix and the second has a polyvininylchloride (PVC) matrix.The main analysis done in this study was the geometrical calculus of the yarn eye using different geometric models and the evaluation of the relative deformation in surface for a biaxial tensile loading (along the rows and the columns of the knitted fabric). Results show a relative deformation of 6.29% for the PU matrix material and a 9.41% relative deformation for the PVC matrix material.The main goal of this study was to obtain a better characterization of the materials studied in order to have indications based on loading conditions when using these materials in their different industrial application.
Key Engineering Materials | 2015
Daniel Achiriloaiei; Cristian Sorin Nes; Ion Dumitru; Anghel Cernescu
Aluminium clad steel reinforced cables are widely used in long distance electrical energy transport. Under the influence of weather conditions, the conductors are subjected to additional stress, which may lead to accelerated deterioration and premature breakage. This phenomenon depends much on contact mechanics. Due to the rough geometry of real mechanical surfaces, the elastic-plastic contact between bodies occurs at several points simultaneously. The contact between wires or between the wires and the suspension clamp, which is regarded as a critical location, changes the mechanical properties of the conductor with the emergence and development of contact indents. In order to understand the development of the indents ant their influence in the properties of the wires, indentation, tensile and fatigue tests were performed on wires taken from a steel-aluminium conductor. The problem of normal contact when plastic deformations are much higher than the elastic ones is extremely complex. The convex profile of the wires brings additional complications. Specific strain intensity is proportional to the depth of penetration. Experimental researches have shown that the shape and size of the indents occurred at the contact points have a significant influence on the tensile strength and lifetime of the conductors and local deformations determine certain features of fatigue crack initiation and propagation.
Key Engineering Materials | 2014
Anghel Cernescu; Nicolae Faur; Cristina Bortun
Total dentures are made of acrylic resins and artificial teeth. Among the prevalent fracture types of the dentures, 29% was a mid-line fracture, in which 68% were observed in maxillary complete dentures and 28% in mandibular complete dentures. Due to the large number of failures recorded on the maxillary dentures, several studies were conducted to establish the causes that produce these failures but also to find solutions for their prevention. One source of information about the strength of a maxillary denture under the applied load, is represented by the establishment of the stress and strain state during the loading. Different methods have been used for investigating the strain or stress distribution during deformation of dentures. The purpose of this paper is to evaluate the stress and strain state of a maxillary denture loaded in compression until the final fracture. For this study, electrical resistance strain gage were used for evaluation the strain and stress distribution in the maxillary denture made of different acrylic resins. Based on observations from practice, the strain gages were applied on the middle line of the denture at the base of the incisors and respectively on the sides of the denture, under molars. The dentures were loaded until failure and were registered the strains in the located strain gages. Also, for each type of acrylic resin were determined separately the mechanical properties of elasticity and strength. Based on the tests conducted were determined the critical stress and strain in the areas of interest. In all the tests carried out the fracture occurred in the median area of the denture and the crack was initiated between the incisor teeth. The stress and strain field associated with the crack initiation mode showed a strong influence of geometry on the fracture strength of denture. Also the type of acrylic resin has a significant effect on the fracture strength of complete denture either by strength capacity but especially by their ability to elasticity. Based on this analysis have been established new criteria for selection of acrylic resins, not only for aesthetic reasons but also for elasticity and strength reasons.