Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anguraj Sadanandam is active.

Publication


Featured researches published by Anguraj Sadanandam.


Nature Medicine | 2015

The consensus molecular subtypes of colorectal cancer

Justin Guinney; Rodrigo Dienstmann; Xingwu Wang; Aurélien de Reyniès; Andreas Schlicker; Charlotte Soneson; Laetitia Marisa; Paul Roepman; Gift Nyamundanda; Paolo Angelino; Brian M. Bot; Jeffrey S. Morris; Iris Simon; Sarah Gerster; Evelyn Fessler; Felipe de Sousa e Melo; Edoardo Missiaglia; Hena Ramay; David Barras; Krisztian Homicsko; Dipen M. Maru; Ganiraju C. Manyam; Bradley M. Broom; Valérie Boige; Beatriz Perez-Villamil; Ted Laderas; Ramon Salazar; Joe W. Gray; Douglas Hanahan; Josep Tabernero

Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression–based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor–β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC—with clear biological interpretability—and the basis for future clinical stratification and subtype-based targeted interventions.


Nature Medicine | 2011

Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy

Eric A. Collisson; Anguraj Sadanandam; Peter Olson; William J. Gibb; Morgan Truitt; Shenda Gu; Janine Cooc; Jennifer Weinkle; Grace E. Kim; Lakshmi Jakkula; Heidi S. Feiler; Andrew H. Ko; Adam B. Olshen; Kathleen L Danenberg; Margaret A. Tempero; Paul T. Spellman; Douglas Hanahan; Joe W. Gray

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically 6 months from diagnosis. Numerous phase 3 trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Furthermore, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast and lung cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies, along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasimesenchymal and exocrine-like, and we present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Subtype and pathway specific responses to anticancer compounds in breast cancer

Laura M. Heiser; Anguraj Sadanandam; Wen-Lin Kuo; Stephen Charles Benz; Theodore C. Goldstein; Sam Ng; William J. Gibb; Nicholas Wang; Safiyyah Ziyad; Frances Tong; Nora Bayani; Zhi Hu; Jessica Billig; Andrea Dueregger; Sophia Lewis; Lakshmi Jakkula; James E. Korkola; Steffen Durinck; Francois Pepin; Yinghui Guan; Elizabeth Purdom; Pierre Neuvial; Henrik Bengtsson; Kenneth W. Wood; Peter G. Smith; Lyubomir T. Vassilev; Bryan T. Hennessy; Joel Greshock; Kurtis E. Bachman; Mary Ann Hardwicke

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.


Cell | 2014

Yap1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer

Avnish Kapoor; Wantong Yao; Haoqiang Ying; Sujun Hua; Alison Liewen; Qiuyun Wang; Yi Zhong; Chang Jiun Wu; Anguraj Sadanandam; Baoli Hu; Qing Chang; Gerald C. Chu; Ramsey Al-Khalil; Shan Jiang; Hongai Xia; Eliot Fletcher-Sananikone; Carol Lim; Gillian I. Horwitz; Andrea Viale; Piergiorgio Pettazzoni; Nora Sanchez; Huamin Wang; Alexei Protopopov; Jianhua Zhang; Timothy P. Heffernan; Randy L. Johnson; Lynda Chin; Y. Alan Wang; Giulio Draetta; Ronald A. DePinho

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Cancer and Metastasis Reviews | 2007

Chemokines in tumor angiogenesis and metastasis

Seema Singh; Anguraj Sadanandam; Rakesh K. Singh

Chemokines are a large group of low molecular weight cytokines that are known to selectively attract and activate different cell types. Although the primary function of chemokines is well recognized as leukocyte attractants, recent evidences indicate that they also play a role in number of tumor-related processes, such as growth, angiogenesis and metastasis. Chemokines activate cells through cell surface seven trans-membranes, G-protein-coupled receptors (GPCR). The role played by chemokines and their receptors in tumor pathophysiology is complex as some chemokines favor tumor growth and metastasis, while others may enhance anti-tumor immunity. These diverse functions of chemokines establish them as key mediators between the tumor cells and their microenvironment and play critical role in tumor progression and metastasis. In this review, we present some of the recent advances in chemokine research with special emphasis on its role in tumor angiogenesis and metastasis.


Clinical Cancer Research | 2009

Small-Molecule Antagonists for CXCR2 and CXCR1 Inhibit Human Melanoma Growth by Decreasing Tumor Cell Proliferation, Survival, and Angiogenesis

Seema Singh; Anguraj Sadanandam; Kalyan C. Nannuru; Michelle L. Varney; Rosemary Mayer-Ezell; Richard Bond; Rakesh K. Singh

Purpose: Melanoma, the most aggressive form of skin cancer, accounts for 75% of all skin cancer-related deaths and current therapeutic strategies are not effective in advanced disease. In the current study, we have investigated the efficacy of orally active small-molecule antagonist targeting CXCR2/CXCR1. Experimental Design: Human A375SM melanoma cells were treated with SCH-479833 or SCH-527123, and their effect on proliferation, motility, and invasion was evaluated in vitro. We examined the downstream signaling events in the cells following treatment with antagonists. For in vivo studies, A375SM cells were implanted subcutaneously into athymic nude mice followed by administration of SCH-479833, SCH-527123, or hydroxypropyl-β-cyclodextrin (20%) orally for 21 days and their effect on tumor growth and angiogenesis was evaluated. Results: Our data show that SCH-479833 or SCH-527123 inhibited the melanoma cell proliferation, chemotaxis, and invasive potential in vitro. Treatment of melanoma cells with SCH-479833 or SCH-527123 also inhibited tumor growth. Histologic and histochemical analyses showed significant (P < 0.05) decreases in tumor cell proliferation and microvessel density in tumors. Moreover, we observed a significant increase in melanoma cell apoptosis in SCH-479833- or SCH-527123-treated animals compared with controls. Conclusion: Together, these studies show that selectively targeting CXCR2/CXCR1 with orally active small-molecule inhibitors is a promising therapeutic approach for inhibiting melanoma growth and angiogenesis.


British Journal of Cancer | 2009

CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion

Seema Singh; Kalyan C. Nannuru; Anguraj Sadanandam; Michelle L. Varney; Rakesh K. Singh

The aggressiveness of malignant melanoma is associated with differential expression of CXCL-8 and its receptors, CXCR1 and CXCR2. However, the precise functional role of these receptors in melanoma progression remains unclear. In this study, we investigate the precise functional role of CXCR1 and CXCR2 in melanoma progression. CXCR1 or CXCR2 were stably overexpressed in human melanoma cell lines, SBC-2 (non-tumourigenic) and A375P (low-tumourigenic) exhibiting low endogenous expression of receptors. Functional assays were performed to study the resulting changes in cell proliferation, motility and invasion, and in vivo tumour growth using a mouse xenograft model. Our data demonstrated that CXCR1- or CXCR2-overexpressing SBC-2 and A375P melanoma cells had enhanced proliferation, chemotaxis and invasiveness in vitro. Interestingly, CXCR1 or CXCR2 overexpression in SBC-2 cells induced tumourigenicity, and A375P cells significantly enhanced tumour growth as examined in vivo. Immunohistochemical analyses showed significantly increased tumour cell proliferation and microvessel density and reduced apoptosis in tumours generated from CXCR1- or CXCR2-overexpressing melanoma cells. CXCR1- or CXCR2-induced modulation of melanoma cell proliferation and migration was observed to be mediated through the activation of ERK1/2 phosphorylation. Together, these studies demonstrate that CXCR1 and CXCR2 play essential role in growth, survival, motility and invasion of human melanoma.


Breast Cancer Research | 2010

The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer

Zhi Hu; Ge Huang; Anguraj Sadanandam; Shenda Gu; Marc E. Lenburg; Melody Pai; Nora Bayani; Eleanor A. Blakely; Joe W. Gray; Jian-Hua Mao

IntroductionHJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome.MethodsWe measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis.ResultsHJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels.ConclusionsHJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.


Cancer Research | 2008

Cathepsin G Enhances Mammary Tumor–Induced Osteolysis by Generating Soluble Receptor Activator of Nuclear Factor-κB Ligand

Thomas J. Wilson; Kalyan C. Nannuru; Mitsuru Futakuchi; Anguraj Sadanandam; Rakesh K. Singh

Breast cancer commonly causes osteolytic metastases in bone, a process that is dependent on tumor-stromal interaction. Proteases play an important role in modulating tumor-stromal interactions in a manner that favors tumor establishment and progression. Whereas several studies have examined the role of proteases in modulating the bone microenvironment, little is currently known about their role in tumor-bone interaction during osteolytic metastasis. In cancer-induced osteolytic lesions, cleavage of receptor activator of nuclear factor-kappaB ligand (RANKL) to a soluble version (sRANKL) is critical for widespread osteoclast activation. Using a mouse model that mimics osteolytic changes associated with breast cancer-induced bone metastases, we identified cathepsin G, cathepsin K, matrix metalloproteinase (MMP)-9, and MMP13 to be proteases that are up-regulated at the tumor-bone interface using comparative cDNA microarray analysis and quantitative reverse transcription-PCR. Moreover, we showed that cathepsin G is capable of shedding the extracellular domain of RANKL, generating active sRANKL that is capable of inducing differentiation and activation of osteoclast precursors. The major source of cathepsin G at the tumor-bone interface seems to be osteoclasts that up-regulate production of cathepsin G via interaction with tumor cells. Furthermore, we showed that in vitro osteoclastogenesis is reduced by inhibition of cathepsin G in a coculture model and that in vivo inhibition of cathepsin G reduces mammary tumor-induced osteolysis. Together, our data indicate that cathepsin G activity at the tumor-bone interface plays an important role in mammary tumor-induced osteolysis and suggest that cathepsin G is a potentially novel therapeutic target in the treatment of breast cancer bone metastasis.


Science | 2018

Patient-derived organoids model treatment response of metastatic gastrointestinal cancers

Georgios Vlachogiannis; Somaieh Hedayat; Alexandra Vatsiou; Yann Jamin; Javier Fernández-Mateos; Khurum Khan; Andrea Lampis; Katherine Eason; Ian Said Huntingford; Rosemary Burke; Mihaela Rata; Dow-Mu Koh; Nina Tunariu; David J. Collins; Sanna Hulkki-Wilson; Chanthirika Ragulan; Inmaculada Spiteri; Sing Yu Moorcraft; Ian Chau; Sheela Rao; David Watkins; Nicos Fotiadis; Maria Antonietta Bali; Mahnaz Darvish-Damavandi; Hazel Lote; Zakaria Eltahir; Elizabeth C. Smyth; Ruwaida Begum; Paul A. Clarke; Jens Claus Hahne

Cancer organoids to model therapy response Cancer organoids are miniature, three-dimensional cell culture models that can be made from primary patient tumors and studied in the laboratory. Vlachogiannis et al. asked whether such “tumor-in-a-dish” approaches can be used to predict drug responses in the clinic. They generated a live organoid biobank from patients with metastatic gastrointestinal cancer who had previously been enrolled in phase I or II clinical trials. This allowed the authors to compare organoid drug responses with how the patient actually responded in the clinic. Encouragingly, the organoids had similar molecular profiles to those of the patient tumor, reinforcing their value as a platform for drug screening and development. Science, this issue p. 920 Organoids can recapitulate patient responses in the clinic, with potential for drug screening and personalized medicine. Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.

Collaboration


Dive into the Anguraj Sadanandam's collaboration.

Top Co-Authors

Avatar

Rakesh K. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gift Nyamundanda

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Chanthirika Ragulan

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle L. Varney

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Cunningham

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Elisa Fontana

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Katherine Eason

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Douglas Hanahan

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Nicola Valeri

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge