Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angus M. Hunter is active.

Publication


Featured researches published by Angus M. Hunter.


British Journal of Sports Medicine | 2003

Effects of supramaximal exercise on the electromyographic signal

Angus M. Hunter; A. St Clair Gibson; Mike Lambert; L Nobbs; Timothy D. Noakes

Aim: To determine the neuromuscular recruitment characteristics during supramaximal exercise. Methods: Ten healthy subjects completed the Wingate anaerobic test (WAT) cycling protocol. Electromyographic (EMG) data and rate of fatigue were recorded throughout the cycling. Results: The mean (SD) rate of fatigue (decrease in power output) was 44.5 (8.6)%. No significant change was found in EMG amplitude. A significant decrease (p<0.01) in mean power frequency spectrum was found over the 30 second period. Conclusions: During WAT, mean power frequency spectrum was attenuated with no decline in EMG amplitude, which may be caused by an accumulation of metabolites in the periphery. However, it is also possible that the feedback loop from intramuscular metabolism to the central nervous system is unable, within the 30 second period of the WAT, to affect neural recruitment strategy.


Medicine and Science in Sports and Exercise | 2002

Electromyographic (EMG) normalization method for cycle fatigue protocols.

Angus M. Hunter; Allan St Clair Gibson; Mike Lambert; Timothy D. Noakes

PURPOSE To determine the most effective electromyographic (EMG) normalization method for cycling fatigue protocols. METHODS Ten healthy subjects performed two 5-s isometric knee extension maximal voluntary contractions (MVC) at a knee joint angle of 60 degrees, two fixed cycle pedal contraction at knee joint angles of 60 degrees (60 degrees A) and 108 degrees (108 degrees A), and a dynamic single maximal revolution of a cycle pedal (1REV). Integrated EMG (IEMG) data were recorded for all contractions and power output recorded during MVC and 1REV. RESULTS Mean IEMG for MVC was significantly (P < 0.01) greater than 60 degrees C, 108 degrees C, and 1REV. There were no significant differences between MVC and 1REV power output/EMG relationship. CONCLUSIONS MVC will record a higher IEMG than 60 degrees A, 108 degrees A, and 1REV. As IEMG was greatest during MVC, and the relationship between IEMG and power output was not different between MVC and 1REV, normalization against maximal possible recruitment potential is most likely during MVC.


Journal of Applied Physiology | 2013

Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists

Craig M. Neal; Angus M. Hunter; Lorraine Brennan; Aifric O'Sullivan; D. Lee Hamilton; Giuseppe DeVito; Stuart D.R. Galloway

This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.


Journal of Strength and Conditioning Research | 2012

Muscle activation in the loaded free barbell squat: A brief review

Dave R. Clark; Mike Lambert; Angus M. Hunter

The purpose of this article was to review a series of studies (n = 18) where muscle activation in the free barbell back squat was measured and discussed. The loaded barbell squat is widely used and central to many strength training programs. It is a functional and safe exercise that is obviously transferable to many movements in sports and life. Hence, a large and growing body of research has been published on various aspects of the squat. Training studies have measured the impact of barbell squat loading schemes on selected training adaptations including maximal strength and power changes in the squat. Squat exercise training adaptations and their impact on a variety of performance parameters, in particular countermovement jump, acceleration, and running speed, have also been reported. Furthermore, studies have reported on the muscle activation of the lower limb resulting from variations of squat depth, foot placement, training status, and training intensity. There have also been studies on the impact of squatting with or without a weight belt on trunk muscle activation (TMA). More recently, studies have reported on the effect of instability on TMA and squat performance. Research has also shown that muscle activation of the prime movers in the squat exercise increases with an increase in the external load. Also common variations such as stance width, hip rotation, and front squat do not significantly affect muscle activation. However, despite many studies, this information has not been consolidated, resulting in a lack of consensus about how the information can be applied. Therefore, the purpose of this review was to examine studies that reported muscle activation measured by electromyography in the free barbell back squat with the goal of clarifying the understanding of how the exercise can be applied.


British Journal of Sports Medicine | 2006

Effect of lower limb massage on electromyography and force production of the knee extensors

Angus M. Hunter; Joan M Watt; Stuart D.R. Galloway

Objective: To evaluate the effect of massage on force production and neuromuscular recruitment. Methods: Ten healthy male subjects performed isokinetic concentric contractions on the knee extensors at speeds of 60, 120, 180, and 240°/s. These contractions were performed before and after a 30 minute intervention of either rest in the supine position or lower limb massage. Electromyography (EMG) and force data were captured during the contractions. Results: The change in isokinetic mean force due to the intervention showed a significant decrease (p<0.05) at 60°/s and a trend for a decrease (p  =  0.08) at 120°/s as a result of massage compared with passive rest. However, there were no corresponding differences in any of the EMG data. A reduction in force production was shown at 60°/s with no corresponding alteration in neuromuscular activity. Conclusions: The results suggests that motor unit recruitment and muscle fibre conduction velocity are not responsible for the observed reductions in force. Although experimental confirmation is necessary, a possible explanation is that massage induced force loss by influencing “muscle architecture”. However, it is possible that the differences were only found at 60°/s because it was the first contraction after massage. Therefore muscle tension and architecture after massage and the duration of any massage effect need to be examined.


Journal of Electromyography and Kinesiology | 2013

Long-term stability of tensiomyography measured under different muscle conditions

Massimiliano Ditroilo; Iain J. Smith; Malcolm M. Fairweather; Angus M. Hunter

Tensiomyography (TMG) is a technique utilised to measure mechanical and contractile properties of skeletal muscle. Aim of this study was to assess long-term stability of TMG across a variety of muscle conditions. Gastrocnemius Medialis of 21 healthy males was measured using TMG in rested conditions, after a warm-up, after a maximal voluntary contraction and after a fatigue protocol. Participants were re-tested on a second occasion 4weeks apart. Among the parameters examined, Contraction Time, Sustain Time and Delay time exhibited a good level of absolute reliability (CV=3.8-9.4%) and poor to excellent level of relative reliability (ICC=0.56-0.92). On the other hand, relative reliability was good to excellent for muscle Displacement (ICC=0.86-0.96), whereas its level of absolute reliability was questionable (CV=8.0-14.8%). Minimum detectable change was less than 20% in most conditions for the aforementioned parameters. Half-relaxation Time yielded overall insufficient reliability. In general, the level of reliability tended to increase after the maximal voluntary contraction and the fatigue protocol were administered, probably because of more controlled conditions preceding the measurement. Information about the long-term stability of TMG across different muscle conditions is essential when intervention studies are undertaken with an exercising population, particularly athletes.


European Journal of Sport Science | 2006

Effects of carbohydrate ingestion on skill maintenance in squash players

Lindsay M. Bottoms; Angus M. Hunter; Stuart D.R. Galloway

Abstract The effects of carbohydrate (CHO) ingestion during sports which require high levels of motor and cognitive skill, such as squash, have produced conflicting results. This study aimed to explore the effect of CHO ingestion on squash skill following short duration exercise simulating the demands of squash play. Sixteen male squash players of a high standard were recruited. Following a VO2max test, and familiarisation trial, subjects completed two further trials assessing skill pre- and post-exercise designed to simulate the demands of squash play. A squash skill test assessed accuracy of the forehand and backhand straight drives. Exercise consisted of 20 minutes of shuttle running at 82(±5)% HRmax, and 9 minutes of ghosting at 94(±4)% HRmax. Capillary blood samples (20 µl) were taken at five intervals for measurement of glucose and lactate. Cognitive function was measured with choice visual and auditory reaction time (RT) tests pre- and post-exercise, as was forearm wrist flexor MVC and fatigue profile. CHO drink (6.4% CHO) or matched placebo (PL) were administered after the initial skill test (500 ml), after the shuttle running (250 ml), and after the ghosting (250 ml) in a double blind crossover design. There was no overall effect of CHO ingestion on skill maintenance (p=0.10) however, significantly fewer balls landed outside the scoring zone (p=0.03) on the CHO ingestion trial. There was no change of visual RT pre- to post-exercise on PL (+0.01±0.03s), but a significant improvement (−0.07±0.05s) was observed in the CHO trial. Auditory RT improved pre- to post-exercise during both trials. MVC and fatigue profile of the wrist flexors was not different between trials but showed a force decrement pre- to post-exercise (p<0.05). A significant difference in blood glucose was observed between trials (p<0.01) but blood lactate response during both trials was similar. These results lend some support to a beneficial effect of CHO ingestion on skill during game sports.


EBioMedicine | 2016

Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading

Thomas G. Di Virgilio; Angus M. Hunter; Lindsay Wilson; William Stewart; Stuart Goodall; Glyn Howatson; David I. Donaldson; Magdalena Ietswaart

Introduction There is growing concern around the effects of concussion and sub-concussive impacts in sport. Routine game-play in soccer involves intentional and repeated head impacts through ball heading. Although heading is frequently cited as a risk to brain health, little data exist regarding the consequences of this activity. This study aims to assess the immediate outcomes of routine football heading using direct and sensitive measures of brain function. Methods Nineteen amateur football players (5 females; age 22 ± 3 y) headed machine-projected soccer balls at standardized speeds, modelling routine soccer practice. The primary outcome measure of corticomotor inhibition measured using transcranial magnetic stimulation, was assessed prior to heading and repeated immediately, 24 h, 48 h and 2 weeks post-heading. Secondary outcome measures were cortical excitability, postural control, and cognitive function. Results Immediately following heading an increase in corticomotor inhibition was detected; further to these electrophysiological alterations, measurable reduction memory function were also found. These acute changes appear transient, with values normalizing 24 h post-heading. Discussion Sub-concussive head impacts routine in soccer heading are associated with immediate, measurable electrophysiological and cognitive impairments. Although these changes in brain function were transient, these effects may signal direct consequences of routine soccer heading on (long-term) brain health which requires further study.


Metabolism-clinical and Experimental | 2017

Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance

Mariasole Da Boit; Angus M. Hunter; Stuart R. Gray

N-3 PUFA (n-3) polyunsaturated fatty acids (PUFA) are a family of fatty acids mainly found in oily fish and fish oil supplements. The effects of n-3 PUFA on health are mainly derived from its anti-inflammatory proprieties and its influence on immune function. Lately an increased interest in n-3 PUFA supplementation has reached the world of sport nutrition, where the majority of athletes rely on nutrition strategies to improve their training and performance. A vast amount of attention is paid in increasing metabolic capacity, delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function. Nutritional strategies are also frequently considered for enhancing recovery, improving immune function and decreasing oxidative stress. The current review of the literature shows that data regarding the effects of n-3PUFA supplementation are conflicting and we conclude that there is, therefore, not enough evidence supporting a beneficial role on the aforementioned aspects of exercise performance.


Journal of Sports Sciences | 2011

Reliability of a combined biomechanical and surface electromyographical analysis system during dynamic barbell squat exercise

Raphael Brandon; Glyn Howatson; Angus M. Hunter

Abstract An analysis system for barbell weightlifting exercises is proposed to record reliable performance and neuromuscular responses. The system consists of surface electromyography (sEMG) synchronized with electrogoniometry and a barbell position transducer. The purpose of this study was to establish the reliability of the three components of the system. Nine males (age 28.9 ± 4.8 years, mass 85.7 ± 15.1 kg) performed squat exercise at three loads on three separate trial days. A data acquisition and software system processed maximal knee angle (flexion), mean power for the concentric phase of squat exercise, and normalized root mean square of the vastus lateralis. Inter-trial coefficients of variation for each variable were calculated as 5.3%, 7.8%, and 7.5% respectively. In addition, knee joint motion and barbell displacement were significantly related to each other (bar displacement (m) = 1.39–0.0057 × knee angle (degress), with goodness-of-fit value, r 2 = 0.817), suggesting knee goniometry alone can represent the kinematics of a multi-joint squat exercise. The proven reliability of the three components of this system allows for real-time monitoring of resistance exercise using the preferred training methods of athletes, which could be valuable in the understanding of the neuromuscular response of elite strength training methods.

Collaboration


Dive into the Angus M. Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Lambert

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge