Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anh Hoang is active.

Publication


Featured researches published by Anh Hoang.


Journal of Clinical Oncology | 2012

Effects of Abiraterone Acetate on Androgen Signaling in Castrate-Resistant Prostate Cancer in Bone

Mark A. Titus; Dimitra Tsavachidou; Vassiliki Tzelepi; Sijin Wen; Anh Hoang; Arturo Molina; Nicole Chieffo; L. A. Smith; Maria Karlou; Patricia Troncoso; Christopher J. Logothetis

PURPOSE Persistent androgen signaling is implicated in castrate-resistant prostate cancer (CRPC) progression. This study aimed to evaluate androgen signaling in bone marrow-infiltrating cancer and testosterone in blood and bone marrow and to correlate with clinical observations. PATIENTS AND METHODS This was an open-label, observational study of 57 patients with bone-metastatic CRPC who underwent transiliac bone marrow biopsy between October 2007 and March 2010. Patients received oral abiraterone acetate (1 g) once daily and prednisone (5 mg) twice daily. Androgen receptor (AR) and CYP17 expression were assessed by immunohistochemistry, testosterone concentration by mass spectrometry, AR copy number by polymerase chain reaction, and TMPRSS2-ERG status by fluorescent in situ hybridization in available tissues. RESULTS Median overall survival was 555 days (95% CI, 440 to 965+ days). Maximal prostate-specific antigen decline ≥ 50% occurred in 28 (50%) of 56 patients. Homogeneous, intense nuclear expression of AR, combined with ≥ 10% CYP17 tumor expression, was correlated with longer time to treatment discontinuation (> 4 months) in 25 patients with tumor-infiltrated bone marrow samples. Pretreatment CYP17 tumor expression ≥ 10% was correlated with increased bone marrow aspirate testosterone. Blood and bone marrow aspirate testosterone concentrations declined to less than picograms-per-milliliter levels and remained suppressed at progression. CONCLUSION The observed pretreatment androgen-signaling signature is consistent with persistent androgen signaling in CRPC bone metastases. This is the first evidence that abiraterone acetate achieves sustained suppression of testosterone in both blood and bone marrow aspirate to less than picograms-per-milliliter levels. Potential admixture of blood with bone marrow aspirate limits our ability to determine the origin of measured testosterone.


European Urology | 2015

Molecular Characterization of Enzalutamide-treated Bone Metastatic Castration-resistant Prostate Cancer

Mark A. Titus; Sijin Wen; Anh Hoang; Maria Karlou; Robynne Ashe; Shi Ming Tu; Ana Aparicio; Patricia Troncoso; James L. Mohler; Christopher J. Logothetis

BACKGROUND Enzalutamide is a novel antiandrogen with proven efficacy in metastatic castration-resistant prostate cancer (mCRPC). OBJECTIVE To evaluate enzalutamides effects on cancer and on androgens in blood and bone marrow, and associate these with clinical observations. DESIGN, SETTING, AND PARTICIPANTS In this prospective phase 2 study, 60 patients with bone mCRPC received enzalutamide 160mg orally daily and had transilial bone marrow biopsies before treatment and at 8 wk of treatment. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Androgen signaling components (androgen receptor [AR], AR splice variant 7 (ARV7), v-ets avian erythroblastosis virus E26 oncogene homolog [ERG], cytochrome P450, family 17, subfamily A, polypeptide 1 [CYP17]) and molecules implicated in mCRPC progression (phospho-Met, phospho-Src, glucocorticoid receptor, Ki67) were assessed by immunohistochemistry; testosterone, cortisol, and androstenedione concentrations were assessed by liquid chromatography-tandem mass spectrometry; AR copy number was assessed by real-time polymerase chain reaction. Descriptive statistics were applied. RESULTS AND LIMITATIONS Median time to treatment discontinuation was 22 wk (95% confidence interval, 19.9-29.6). Twenty-two (37%) patients exhibited primary resistance to enzalutamide, discontinuing treatment within 4 mo. Maximal prostate-specific antigen (PSA) decline ≥ 50% and ≥ 90% occurred in 27 (45%) and 13 (22%) patients, respectively. Following 8 wk of treatment, bone marrow and circulating testosterone levels increased. Pretreatment tumor nuclear AR overexpression (> 75%) and CYP17 (> 10%) expression were associated with benefit (p = 0.018). AR subcellular localization shift from the nucleus was confirmed in eight paired samples (with PSA decline) of 23 evaluable paired samples. Presence of an ARV7 variant was associated with primary resistance to enzalutamide (p = 0.018). Limited patient numbers warrant further validation. CONCLUSIONS The observed subcellular shift of AR from the nucleus and increased testosterone concentration provide the first evidence in humans that enzalutamide suppresses AR signaling while inducing an adaptive feedback. Persistent androgen signaling in mCRPC was predictive of benefit and ARV7 was associated with primary resistance. PATIENT SUMMARY We report a first bone biopsy study in metastatic prostate cancer in humans that searched for predictors of outcome of enzalutamide therapy. Benefit is linked to a pretreatment androgen-signaling signature. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT01091103.


Oncogene | 2016

Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma.

Lijun Zhou; Xian-De Liu; Mianen Sun; Xuesong Zhang; Peter German; Shanshan Bai; Zhiyong Ding; Nizar M. Tannir; Christopher G. Wood; Surena F. Matin; Jose A. Karam; Pheroze Tamboli; Kanishka Sircar; Priya Rao; Erinn B. Rankin; Douglas Laird; Anh Hoang; Cheryl L. Walker; Amato J. Giaccia; Eric Jonasch

Antiangiogenic therapy resistance occurs frequently in patients with metastatic renal cell carcinoma (RCC). The purpose of this study was to understand the mechanism of resistance to sunitinib, an antiangiogenic small molecule, and to exploit this mechanism therapeutically. We hypothesized that sunitinib-induced upregulation of the prometastatic MET and AXL receptors is associated with resistance to sunitinib and with more aggressive tumor behavior. In the present study, tissue microarrays containing sunitinib-treated and untreated RCC tissues were stained with MET and AXL antibodies. The low malignant RCC cell line 786-O was chronically treated with sunitinib and assayed for AXL, MET, epithelial–mesenchymal transition (EMT) protein expression and activation. Co-culture experiments were used to examine the effect of sunitinib pretreatment on endothelial cell growth. The effects of AXL and MET were evaluated in various cell-based models by short hairpin RNA or inhibition by cabozantinib, the multi-tyrosine kinases inhibitor that targets vascular endothelial growth factor receptor, MET and AXL. Xenograft mouse models tested the ability of cabozantinib to rescue sunitinib resistance. We demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients. Chronic sunitinib treatment of RCC cell lines activated both AXL and MET, induced EMT-associated gene expression changes, including upregulation of Snail and β-catenin, and increased cell migration and invasion. Pretreatment with sunitinib enhanced angiogenesis in 786-0/human umbilical vein endothelial cell co-culture models. The suppression of AXL or MET expression and the inhibition of AXL and MET activation using cabozantinib both impaired chronic sunitinib treatment-induced prometastatic behavior in cell culture and rescued acquired resistance to sunitinib in xenograft models. In summary, chronic sunitinib treatment induces the activation of AXL and MET signaling and promotes prometastatic behavior and angiogenesis. The inhibition of AXL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.


Proceedings of the National Academy of Sciences of the United States of America | 2015

PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3.

Ahmad Salameh; Alessandro K. Lee; Marina Cardó-Vila; Diana N. Nunes; Fernanda I. Staquicini; Andrey S. Dobroff; Serena Marchiò; Nora M. Navone; Hitomi Hosoya; Richard C. Lauer; Sijin Wen; Carolina C. Salmeron; Anh Hoang; Irene Newsham; Leandro de Araujo Lima; Dirce Maria Carraro; Salvatore Oliviero; Mikhail G. Kolonin; Richard L. Sidman; Kim Anh Do; Patricia Troncoso; Christopher J. Logothetis; Ricardo R. Brentani; George A. Calin; Webster K. Cavenee; Emmanuel Dias-Neto; Renata Pasqualini; Wadih Arap

Significance Prostate cancer has an unpredictable natural history: While most tumors are clinically indolent, some patients display lethal phenotypes. Serum prostate-specific antigen is the most often used test in prostate cancer but screening is controversial. Treatment options are limited for metastatic disease, hence the need for early diagnosis. Prostate cancer antigen 3 (PCA3), a long noncoding RNA, is the most specific biomarker identified and approved as a diagnostic test. However, its inherent biological function (if any) has remained elusive. We uncovered a negative transdominant oncogenic role for PCA3 that down-regulates an unrecognized tumor suppressor gene, PRUNE2 (a human homolog of the Drosophila prune gene) thereby promoting malignant cell growth. This work defines a unique biological function for PCA3 in prostate cancer. Prostate cancer antigen 3 (PCA3) is the most specific prostate cancer biomarker but its function remains unknown. Here we identify PRUNE2, a target protein-coding gene variant, which harbors the PCA3 locus, thereby classifying PCA3 as an antisense intronic long noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels via a unique regulatory mechanism involving formation of a PRUNE2/PCA3 double-stranded RNA that undergoes adenosine deaminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA editing. PRUNE2 expression or silencing in prostate cancer cells decreased and increased cell proliferation, respectively. Moreover, PRUNE2 and PCA3 elicited opposite effects on tumor growth in immunodeficient tumor-bearing mice. Coregulation and RNA editing of PRUNE2 and PCA3 were confirmed in human prostate cancer specimens, supporting the medical relevance of our findings. These results establish PCA3 as a dominant-negative oncogene and PRUNE2 as an unrecognized tumor suppressor gene in human prostate cancer, and their regulatory axis represents a unique molecular target for diagnostic and therapeutic intervention.


Clinical Cancer Research | 2012

Modeling a lethal prostate cancer variant with small-cell carcinoma features

Vassiliki Tzelepi; Jiexin Zhang; Jing Fang Lu; Brittany Kleb; Guanglin Wu; Xinhai Wan; Anh Hoang; Kanishka Sircar; Nora M. Navone; Patricia Troncoso; Shoudan Liang; Christopher J. Logothetis; Sankar N. Maity; Ana Aparicio

Purpose: Small-cell prostate carcinoma (SCPC) morphology predicts for a distinct clinical behavior, resistance to androgen ablation, and frequent but short responses to chemotherapy. We sought to develop model systems that reflect human SCPC and can improve our understanding of its biology. Experimental Design: We developed a set of castration-resistant prostate carcinomas xenografts and examined their fidelity to their human tumors of origin. We compared the expression and genomic profiles of SCPC and large-cell neuroendocrine carcinoma (LCNEC) xenografts to those of typical prostate adenocarcinoma xenografts. Results were validated immunohistochemically in a panel of 60 human tumors. Results: The reported SCPC and LCNEC xenografts retain high fidelity to their human tumors of origin and are characterized by a marked upregulation of UBE2C and other mitotic genes in the absence of androgen receptor (AR), retinoblastoma (RB1), and cyclin D1 (CCND1) expression. We confirmed these findings in a panel of samples of CRPC patients. In addition, array comparative genomic hybridization of the xenografts showed that the SCPC/LCNEC tumors display more copy number variations than the adenocarcinoma counterparts. Amplification of the UBE2C locus and microdeletions of RB1 were present in a subset, but none displayed AR nor CCND1 deletions. The AR, RB1, and CCND1 promoters showed no CpG methylation in the SCPC xenografts. Conclusion: Modeling human prostate carcinoma with xenografts allows in-depth and detailed studies of its underlying biology. The detailed clinical annotation of the donor tumors enables associations of anticipated relevance to be made. Future studies in the xenografts will address the functional significance of the findings. Clin Cancer Res; 18(3); 666–77. ©2011 AACR.


Cancer immunology research | 2015

Resistance to Antiangiogenic Therapy Is Associated with an Immunosuppressive Tumor Microenvironment in Metastatic Renal Cell Carcinoma

Xian-De Liu; Anh Hoang; Lijun Zhou; Sarathi Kalra; Alper Yetil; Mianen Sun; Zhiyong Ding; Xuesong Zhang; Shanshan Bai; Peter German; Pheroze Tamboli; Priya Rao; Jose A. Karam; Christopher G. Wood; Surena F. Matin; Amado J. Zurita; Axel Bex; Arjan W. Griffioen; Jianjun Gao; Padmanee Sharma; Nizar M. Tannir; Kanishka Sircar; Eric Jonasch

Therapeutic PD-1/PD-L1 blockade requires preexisting tumor-infiltrating T cells. In a subset of metastatic RCC patients, antiangiogenic therapy increased T-cell infiltration and PD-L1 upregulation, increasing the likelihood that they may uniquely benefit from combination checkpoint and antiangiogenic therapy. Renal cell carcinoma (RCC) is an immunogenic and proangiogenic cancer, and antiangiogenic therapy is the current mainstay of treatment. Patients with RCC develop innate or adaptive resistance to antiangiogenic therapy. There is a need to identify biomarkers that predict therapeutic resistance and guide combination therapy. We assessed the interaction between antiangiogenic therapy and the tumor immune microenvironment and determined their impact on clinical outcome. We found that antiangiogenic therapy–treated RCC primary tumors showed increased infiltration of CD4+ and CD8+ T lymphocytes, which was inversely related to patient overall survival and progression-free survival. Furthermore, specimens from patients treated with antiangiogenic therapy showed higher infiltration of CD4+FOXP3+ regulatory T cells and enhanced expression of checkpoint ligand programed death-ligand 1 (PD-L1). Both immunosuppressive features were correlated with T-lymphocyte infiltration and were negatively related to patient survival. Treatment of RCC cell lines and RCC xenografts in immunodeficient mice with sunitinib also increased tumor PD-L1 expression. Results from this study indicate that antiangiogenic treatment may both positively and negatively regulate the tumor immune microenvironment. These findings generate hypotheses on resistance mechanisms to antiangiogenic therapy and will guide the development of combination therapy with PD-1/PD-L1–blocking agents. Cancer Immunol Res; 3(9); 1017–29. ©2015 AACR.


Journal of Clinical Oncology | 2011

Persistent, Biologically Meaningful Prostate Cancer After 1 Year of Androgen Ablation and Docetaxel Treatment

Vassiliki Tzelepi; Sijin Wen; Patricia Troncoso; Maria Karlou; Curtis A. Pettaway; Louis L. Pisters; Anh Hoang; Christopher J. Logothetis; Lance C. Pagliaro

PURPOSE Clinicians are increasingly willing to treat prostate cancer within the primary site in the presence of regional lymph node or even limited distant metastases. However, no formal study on the merits of this approach has been reported. We used a preoperative clinical discovery platform to prioritize pathways for assessment as therapeutic targets and to test the hypothesis that the primary site harbors potentially lethal tumors after aggressive treatment. PATIENTS AND METHODS Patients with locally advanced or lymph node-metastatic prostate cancer underwent 1 year of androgen ablation and three cycles of docetaxel therapy, followed by prostatectomy. All specimens were characterized for stage by accepted criteria. Expression of select molecular markers implicated in disease progression and therapy resistance was determined immunohistochemically and compared with that in 30 archived specimens from untreated patients with high-grade prostate cancer. Marker expression was divided into three groups: intracellular signaling pathways, stromal-epithelial interaction pathways, and angiogenesis. RESULTS Forty patients were enrolled, 30 (75%) of whom underwent prostatectomy and two (5%) who underwent cystoprostatectomy. Twenty-nine specimens contained sufficient residual tumor for inclusion in a tissue microarray. Immunohistochemical analysis showed increased epithelial and stromal expression of CYP17, SRD5A1, and Hedgehog pathway components, and modulations of the insulin-like growth factor I pathway. CONCLUSION A network of molecular pathways reportedly linked to prostate cancer progression is activated after 1 year of therapy; biomarker expression suggests that potentially lethal cancers persist in the primary tumor and may contribute to progression.


Cancer | 2015

Targeting the interleukin‐11 receptor α in metastatic prostate cancer: A first‐in‐man study

Renata Pasqualini; Randall E. Millikan; Dawn R. Christianson; Marina Cardó-Vila; Wouter Driessen; Ricardo J. Giordano; Amin Hajitou; Anh Hoang; Sijin Wen; Kirstin F. Barnhart; Wallace B. Baze; Valerie D. Marcott; David H. Hawke; Kim-Anh Do; Nora M. Navone; Patricia Troncoso; Roy R. Lobb; Christopher J. Logothetis; Wadih Arap

Receptors in tumor blood vessels are attractive targets for ligand‐directed drug discovery and development. The authors have worked systematically to map human endothelial receptors (“vascular zip codes”) within tumors through direct peptide library selection in cancer patients. Previously, they selected a ligand‐binding motif to the interleukin‐11 receptor alpha (IL‐11Rα) in the human vasculature.


Oncogene | 2015

Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis

Xian-De Liu; J. Yao; Durga Nand Tripathi; Zufeng Ding; Yi Xu; Mianen Sun; Jiangwei Zhang; Shanshan Bai; Peter German; Anh Hoang; Lijun Zhou; D. Jonasch; X. Zhang; C. J. Conti; Nizar M. Tannir; N. T. Eissa; Gordon B. Mills; Cheryl L. Walker; Eric Jonasch

Autophagy is a conserved process involved in lysosomal degradation of protein aggregates and damaged organelles. The role of autophagy in cancer is a topic of intense debate, and the underlying mechanism is still not clear. The hypoxia-inducible factor 2α (HIF2α), an oncogenic transcription factor implicated in renal tumorigenesis, is known to be degraded by the ubiquitin–proteasome system (UPS). Here, we report that HIF2α is in part constitutively degraded by autophagy. HIF2α interacts with autophagy–lysosome system components. Inhibition of autophagy increases HIF2α, whereas induction of autophagy decreases HIF2α. The E3 ligase von Hippel-Lindau and autophagy receptor protein p62 are required for autophagic degradation of HIF2α. There is a compensatory interaction between the UPS and autophagy in HIF2α degradation. Autophagy inactivation redirects HIF2α to proteasomal degradation, whereas proteasome inhibition induces autophagy and increases the HIF2α–p62 interaction. Importantly, clear-cell renal cell carcinoma (ccRCC) is frequently associated with monoallelic loss and/or mutation of autophagy-related gene ATG7, and the low expression level of autophagy genes correlates with ccRCC progression. The protein levels of ATG7 and beclin 1 are also reduced in ccRCC tumors. This study indicates that autophagy has an anticancer role in ccRCC tumorigenesis, and suggests that constitutive autophagic degradation of HIF2α is a novel tumor suppression mechanism.


Oncogene | 2016

High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma

Thai H. Ho; In Young Park; Hao Zhao; Pan Tong; Mia D. Champion; Huihuang Yan; Federico A. Monzon; Anh Hoang; Pheroze Tamboli; Alexander S. Parker; Richard W. Joseph; Wei Qiao; Karl Dykema; Nizar M. Tannir; Erik P. Castle; R. Nunez-Nateras; Bin Tean Teh; Jing Wang; Cheryl L. Walker; Mien Chie Hung; Eric Jonasch

Mutations in SETD2, a histone H3 lysine trimethyltransferase, have been identified in clear cell renal cell carcinoma (ccRCC); however it is unclear if loss of SETD2 function alters the genomic distribution of histone 3 lysine 36 trimethylation (H3K36me3) in ccRCC. Furthermore, published epigenomic profiles are not specific to H3K36me3 or metastatic tumors. To determine if progressive SETD2 and H3K36me3 dysregulation occurs in metastatic tumors, H3K36me3, SETD2 copy number (CN) or SETD2 mRNA abundance was assessed in two independent cohorts: metastatic ccRCC (n=71) and the Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma data set (n=413). Although SETD2 CN loss occurs with high frequency (>90%), H3K36me3 is not significantly impacted by monoallelic loss of SETD2. H3K36me3-positive nuclei were reduced an average of ~20% in primary ccRCC (90% positive nuclei in uninvolved vs 70% positive nuclei in ccRCC) and reduced by ~60% in metastases (90% positive in uninvolved kidney vs 30% positive in metastases) (P<0.001). To define a kidney-specific H3K36me3 profile, we generated genome-wide H3K36me3 profiles from four cytoreductive nephrectomies and SETD2 isogenic renal cell carcinoma (RCC) cell lines using chromatin immunoprecipitation coupled with high-throughput DNA sequencing and RNA sequencing. SETD2 loss of methyltransferase activity leads to regional alterations of H3K36me3 associated with aberrant RNA splicing in a SETD2 mutant RCC and SETD2 knockout cell line. These data suggest that during progression of ccRCC, a decline in H3K36me3 is observed in distant metastases, and regional H3K36me3 alterations influence alternative splicing in ccRCC.

Collaboration


Dive into the Anh Hoang's collaboration.

Top Co-Authors

Avatar

Christopher J. Logothetis

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Patricia Troncoso

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric Jonasch

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sijin Wen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pheroze Tamboli

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ana Aparicio

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Maria Karlou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nizar M. Tannir

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mark A. Titus

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Xian-De Liu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge