Aniela Golas
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aniela Golas.
The International Journal of Developmental Biology | 2008
Aniela Golas; Anna Dzieza; Katarzyna Kuzniarz; Józefa Styrna
The aim of this study was to map chromosomal regions containing hypothetical genes responsible for the following parameters of mouse semen quality: (1) the percentage of sperm with abnormal head morphology, (2) the level of dead spermatozoa, (3) the percentage of sperm tails with residual cytoplasmic droplets, and (4) the percentage of sperm with impaired sperm tail membrane integrity. We also analyzed any possible correlations between these parameters. The most appropriate animal model for mapping genes controlling quantitative traits (QTL, quantitative trait locus) is a set of recombinant inbred (RI) strains. The set of RI strains used in this study was derived from crosses between two inbred mouse strains, KE and CBA/Kw, which differ significantly in fertility parameters and gamete quality. We analyzed the four parameters of sperm quality in male mice from two parental strains and from 12 RI strains. The strain distribution pattern (SDP) of 187 polymorphic microsatellite markers was prepared for 20 chromosomes of the mouse genome in 12 RI strains. We correlated the SDP of these markers with the values of sperm quality parameters, using MapManager QTX software (ver. b18). The mapping procedure indicated that the percentage of sperm with abnormal head morphology is controlled by gene(s) located in chromosomal regions 11q24, 11q31 and 6q15.6. There was also a strong correlation between male body weight and the hypothetical gene(s) in chromosomal region 18q47. A detailed analysis of the genes located in these regions enabled us to prepare a list of candidate genes. We discuss the basis of the correlation between the measured parameters.
Behavioural Processes | 2003
Małgorzata Kruczek; Aniela Golas
Biological odours of conspecifics are known to have strong influences on behavioural interaction in bank voles Clethrionomys glareolus. This experiment tested two hypotheses. (1) Olfactory cues from familiar and unfamiliar mature opposite-sex conspecifics differ in their attractiveness to males and females, and their behavioural reactions change with age. (2) A genetically based mechanism is involved in female recognition of kin.In a two-choice preference test, prepubertal males and females were more attracted to familiar than to unfamiliar odours of opposite-sex conspecifics, as manifested by more time spent sniffing familiar voles. As the young reached sexual maturity they shifted their odour preferences. Mature males and females preferred the novel odour of unrelated opposite-sex conspecifics to that of relatives. The results of experiments testing the second hypothesis indicate that females use a genetically based mechanism to recognise their kin. Young and mature females were able to recognise the odour of their biological but socially unknown fathers, and showed the same pattern of behaviour as females in previous experiments.The possible biological functions of kin recognition in bank voles are discussed.
Protoplasma | 2013
Malgorzata Swiatoniowska; Antoni Ogorzałek; Aniela Golas; Anna Michalik; Teresa Szklarzewicz
The organization of the symbiotic system (i.e., distribution and ultrastructure of symbionts) and the mode of inheritance of symbionts in two species, Nysius ericae and Nithecus jacobaeae belonging to Heteroptera: Lygaeidae, are described. Like most hemipterans, Nysius ericae and Nithecus jacobaeae harbor obligate prokaryotic symbionts. The symbiotic bacteria are harbored in large, specialized cells termed bacteriocytes which are localized in the close vicinity of the ovaries as well as inside the ovaries. The ovaries are composed of seven ovarioles of the telotrophic type. Bacteriocytes occur in each ovariole in the basal part of tropharium termed the infection zone. The bacteriocytes form a ring surrounding the early previtellogenic oocytes. The cytoplasm of the bacteriocytes is tightly packed with large elongated bacteria. In the bacteriocytes of Nysius ericae, small, rod-shaped bacteria also occur. Both types of bacteria are transovarially transmitted from one generation to the next.
The International Journal of Developmental Biology | 2010
Aniela Golas; Paulina Malek; Piasecka M; Józefa Styrna
In order to study the genetic control of semen quality parameters, we derived a set of recombinant inbred (RI) mice from crosses between two inbred strains, KE and CBA/Kw, which differ significantly in gamete quality and fertility parameters. In this work, we used male mice from the two parental strains and from ten RI strains to map genes controlling quantitative traits such as sperm mitochondrial diaphorase activity, and assessed the correlation between this trait, sperm motility and in vivo fertilization efficiency. We analyzed sperm mitochondrial dehydrogenase (diaphorase) activity (NADH-dependent NBT assay) cytochemically by means of computerized image densitometry and obtained values for four parameters: 1) integrated optical density (IOD) for all pixels of the midpiece, 2) mean optical density (MOD) for the midpiece pixels, 3) length of sperm midpiece and 4) area of sperm midpiece. Polymorphic microsatellite marker profiles were prepared for 20 mouse chromosomes in the ten RI strains. We used Map Manager QTX software to correlate the strain distribution patterns (SDPs) of the four measured parameters with the SDPs of the analyzed markers. Hypothetical genes modifying diaphorase activity were mapped to chromosomal region 19q43-19q47, containing, for example, Poll, Sfxn2, Cyp17a1 and Usmg5 genes. Chromosomal regions 18q44 and 18q49-18q80 also showed correlation with the SDPs of diaphorase activity. Katnal2, Me2 and StARD6 candidate genes were proposed from this region. Diaphorase activity in the mouse sperm midpiece did not correlate with in vivo fertilization efficiency, but was negatively correlated with the linearity and straightness of sperm movement.
Reproductive Sciences | 2014
Malgorzata Grzesiak; Katarzyna Knapczyk-Stwora; Renata E. Ciereszko; Aniela Golas; Iwona Wieciech; Maria Slomczynska
We determined whether androgen deficiency induced by flutamide treatment during mid- and late pregnancy affects the functions of the porcine corpus luteum (CL). Pregnant gilts were injected with flutamide between days 43 and 49 (gestation day [GD] 50F), days 83 and 89 (GD90F), or days 101 and 107 (GD108F) of gestation. Antiandrogen treatment increased the luteal progesterone concentration in the GD50F group and decreased progesterone content in the GD90F and GD108F groups. Luteal levels of side-chain cleavage cytochrome P450 (CYP11A1) mRNA and protein were significantly downregulated in the GD90F and GD108F groups as compared with the respective controls. The 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (HSD3B) mRNA and protein expression were significantly reduced only in the GD108F group as compared with the control. Decreased luteal 20α-hydroxysteroid dehydrogenase (AKR1C1) mRNA and protein levels were observed in the GD50F group. Thus, androgen deficiency during pregnancy in pigs led to CL dysfunction that is marked by decreased progesterone production. Furthermore, exposure to flutamide during late pregnancy downregulated steroidogenic enzymes (CYP11A1 and HSD3B) in pigs. We conclude that androgens are important regulators of CL function during pregnancy.
Reproductive Biology | 2011
Aniela Golas; Tomasz Lech; Milosz Janula; Dorota Bederska; Małgorzata Lenartowicz; Józefa Styrna
Trp53 is a protein which is able to control semen parameters in mice, but the extent of that control depends on the genetic background of the mouse strain. Males from C57BL/6Kw, 129/Sv, C57BL×129 -p53+/+ (wild type controls) and C57BL×129-p53-/- (mutants) strains were used in the study, and histology and light microscopy were applied to evaluate the influence of genetic background and Trp53 (p53) genotype on testes morphology and semen quality in male mice. We showed that sperm head morphology, maturity and tail membrane integrity were controlled only by the genetic background of C57BL/6Kw and 129/Sv males, while testes weight and sperm concentration depended on both the genetic background and p53 genotype. Cell accumulation in seminiferous tubules may be responsible for heavier testes of p53-deficient males. In addition, to examine the effect of sex and p53 genotype on embryo lethality, pairs of control (C57BL×129-p53+/+) and heterozygous (C57BL×129-p53+/-) mice were examined. Before day 7 post coitum (dpc), female and male embryos were equally resorbed in both crosses types. After 7 dpc, preferential female embryo lethality in the heterozygote pairs was responsible for the skewed sex ratio in their progeny. Also, mutant female and male newborns were underrepresented in the litters of the heterozygous breeding pairs.
Zygote | 2013
Tomasz Lech; Aniela Golas; Józefa Styrna
The aim of the study was to evaluate the influence of the chromosome Y structure and Trp53 genotype on semen quality parameters. Mice with partial deletion of the Y chromosome (B10.BR-Ydel) have severely altered sperm head morphology when compared with males that possess the complete Y chromosome (B10.BR). Control males from B10.BR and B10.BR-Ydel mice, and mutant males from B10.BR-p53 -/- and B10.BR-Ydel-p53 -/- experimental groups were used. We assessed testis weight, sperm head abnormalities, viability of spermatozoa (eosin test), percentage of motile and immature sperm, and performed a hypo-osmotic test to detect abnormal tail membrane integrity. Sperm morphology and maturation were controlled by the genes within the deleted region of the Y chromosome. Testis weight was higher in the mutants than in the control males, possibly due to cell accumulation in Trp53-deficient males as the concentration of sperm was significantly increased in the mutants. An elevated percentage of abnormal sperm was noted in B10.BR-p53 -/- and B10.BR-Ydel-p53 -/- male mice. We suggest that, in Trp53-deficient mice, the sperm cells that escape apoptosis are the ones that have abnormal morphology. The only sperm quality parameter affected by the interplay between Trp53 and chromosome Y genes was sperm motility, which was elevated in B10.BR-p53 -/- males, but remained unchanged in B10.BR-Ydel-p53 -/- males.
Journal of Molecular Evolution | 2013
Huan Qiu; Aniela Golas; Paweł Grzmil; Leszek Wojnowski
Gene duplications restricted to single lineage combined with an asymmetric evolution of the resulting genes may play particularly important roles in this lineage’s biology. We searched and identified asymmetrical evolution in nine gene families that duplicated exclusively in rodents and are present as single-copies in human, dog, cow, elephant, opossum, chicken, lizard, and Western clawed frog. Among those nine gene families are Fas apoptosis inhibitory molecule (Faim), implicated in apoptosis, and Sperm antigen 6 (Spag6), implicated in sperm mobility. Both genes were duplicated in or before the Muroidea ancestor. Due to the highly asymmetric evolution of the resulting paralogs, the existence of these duplications had been previously overlooked. Interestingly, Spag6, previously regarded and characterized as a single-copy ortholog of human Spag6, turns out to be a Muroidea-specific paralog. Conversely, the newly identified, highly divergent Spag6-BC061194 is in fact the parental gene. In consequence, this gene represents a rare exception from the general rule of rapid evolution of derived rather than parental genes following gene duplication. Unusual genes such as murine Spag6 may help to understand which mechanisms are responsible for this rule.
Folia Biologica | 2004
Aniela Golas; Paweł Grzmil; Christian Müller; Józefa Styrna
The aim of this study was to compare the inheritance of the chromosomal SSLP markers with the inheritance of sperm movement parameters in order to map genes responsible for these quantitative traits (QTs). Chromosome 7 and 14 SSLP markers were tested to obtain the strain distribution pattern (SDP) for recombinant inbred (RI) strains developed from two progenitors, KE and CBA/Kw, which differ significantly in gamete quality. Sperm motility characteristics were determined using the computer assisted semen analysis (CASA) system. The Map manager software was used in order to assess linkage between the analyzed motility parameters and chromosome regions. The marker regression, interval mapping and permutation tests matched the QT loci of BCF with chromosome 7q11. The likelihood ratio statistic for this association was 18.1 with 79% of the total trait variance explained by QTL at this locus. These mapping results suggest that the BCF trait depends on the genetic factor(s) located in this region.
Reproduction, Fertility and Development | 2013
Katarzyna Kotarska; Małgorzata Lenartowicz; Małgorzata Przybyło; Aniela Golas; Józefa Styrna
Cumuli oophori surrounding ovulated oocytes of B10.BR(Y(del)) females (sired by males with the Y-chromosome long-arm deletion) are more resistant to hyaluronidase digestion than cumuli oophori around eggs of genetically identical females but sired by males with the intact Y chromosome (B10.BR). This has been interpreted as a result of differences in paternal genome imprinting, which females of both groups inherit from their fathers. The following study shows that it is not hyaluronan, but rather excessive protein concentration, that makes the cumulus extracellular matrix of B10.BR(Y(del)) oocytes more resistant to enzymatic treatment. It was revealed, additionally, that cumulus cells around ovulating oocytes of B10.BR(Y(del)) females display higher surface accumulation of prostaglandin EP2 subtype receptors and higher expression of the Ptgs2 gene (encoding a rate-limiting enzyme of prostaglandin E₂ synthesis) in relation to the cells of control B10.BR females. The expression levels of the prostaglandin-dependent Tnfaip6 and Ccl2 genes were also altered in B10.BR(Y(del)) cumulus cells in a manner indicating increased prostaglandin signalling. The study provides further evidence for the divergence in reproductive phenotypes between B10.BR and B10.BR(Y(del)) female mice. It supports the hypothesis that genes of the Y-chromosome long arm may be involved in establishment of epigenetic marks in X-bearing spermatozoa.