Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anika Wiese-Klinkenberg is active.

Publication


Featured researches published by Anika Wiese-Klinkenberg.


Plant Physiology | 2011

Growth Arrest by Trehalose-6-Phosphate: An Astonishing Case of Primary Metabolite Control over Growth by Way of the SnRK1 Signaling Pathway

Thierry L. Delatte; Prapti Sedijani; Youichi Kondou; Minami Matsui; Gerhardus J. de Jong; Govert W. Somsen; Anika Wiese-Klinkenberg; Lucia F. Primavesi; Matthew J. Paul; Henriette Schluepmann

The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11.


Journal of Experimental Botany | 2010

Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects

Richard Poiré; Anika Wiese-Klinkenberg; Boris Parent; Michael Mielewczik; Ulrich Schurr; Franc xois Tardieu; Achim Walter

Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation.These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.


Journal of Experimental Botany | 2012

Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?

Tom Ruts; Shizue Matsubara; Anika Wiese-Klinkenberg; Achim Walter

Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.


Plant Physiology | 2009

Diel Growth Cycle of Isolated Leaf Discs Analyzed with a Novel, High-Throughput Three-Dimensional Imaging Method Is Identical to That of Intact Leaves

Bernhard Biskup; Hanno Scharr; Andreas Fischbach; Anika Wiese-Klinkenberg; Ulrich Schurr; Achim Walter

Dicot leaves grow with pronounced diel (24-h) cycles that are controlled by a complex network of factors. It is an open question to what extent leaf growth dynamics are controlled by long-range or by local signals. To address this question, we established a stereoscopic imaging system, GROWSCREEN 3D, which quantifies surface growth of isolated leaf discs floating on nutrient solution in wells of microtiter plates. A total of 458 leaf discs of tobacco (Nicotiana tabacum) were cut at different developmental stages, incubated, and analyzed for their relative growth rates. The camera system was automatically displaced across the array of leaf discs; visualization and camera displacement took about 12 s for each leaf disc, resulting in a time interval of 1.5 h for consecutive size analyses. Leaf discs showed a comparable diel leaf growth cycle as intact leaves but weaker peak growth activity. Hence, it can be concluded that the timing of leaf growth is regulated by local rather than by systemic control processes. This conclusion was supported by results from leaf discs of Arabidopsis (Arabidopsis thaliana) Landsberg erecta wild-type plants and starch-free1 mutants. At night, utilization of transitory starch leads to increased growth of Landsberg erecta wild-type discs compared with starch-free1 discs. Moreover, the decrease of leaf disc growth when exposed to different concentrations of glyphosate showed an immediate dose-dependent response. Our results demonstrate that a dynamic leaf disc growth analysis as we present it here is a promising approach to uncover the effects of internal and external cues on dicot leaf development.


PLOS ONE | 2012

Effect of Blue Light on Endogenous Isopentenyladenine and Endoreduplication during Photomorphogenesis and De-Etiolation of Tomato (Solanum lycopersicum L.) Seedlings

Véronique Bergougnoux; David Zalabák; Michaela Jandová; Ondřej Novák; Anika Wiese-Klinkenberg; Martin Fellner

Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis.


Plant Signaling & Behavior | 2013

Regulation of growth by the trehalose pathway: relationship to temperature and sucrose.

Cátia Nunes; Henriette Schluepmann; Thierry L. Delatte; Astrid Wingler; Anabela Bernardes da Silva; Pedro Fevereiro; Marcus Jansen; Fabio Fiorani; Anika Wiese-Klinkenberg; Matthew J. Paul

Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.


Plant Journal | 2012

Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

Tom Ruts; Shizue Matsubara; Anika Wiese-Klinkenberg; Achim Walter


52. DGG & BHGL Jahrestagung | 2018

Valorization of residual plant biomass in a novel value chain: Induction of plant secondary metabolism by modified growing conditions

Laura Junker; Björn Thiele; Anna Hermanns; Jana Büchsenschütz; Franziska Genzel; Ulrich Schurr; Alexandra Wormit; Anika Wiese-Klinkenberg


XIV Solanaceae and III Cucurbitaceae Genomics Joint Conference | 2017

INDUCTOME: TRANSCRIPTOME ANALYSIS OF VALUABLE SECONDARY METABOLISM IN GREEN PLANT RESIDUALS FROM TOMATO AFTER ABIOTIC INDUCTION

Julia Jessica Reimer; Robin Tim Biermann; Laura Junker; Björn Thiele; Alexandra Wormit; Björn Usadel; Anika Wiese-Klinkenberg


Deutsche Botanikertagung | 2017

Spatiotemporal pattern of beta-CAROTENE HYDROXYLASE 2 (BCH2) gene expression in Arabidopsis leaves during acclimation to photo-oxidative stress

Anh Banh; Anika Wiese-Klinkenberg; Trang Le; Shizue Matsubara; Eva M. Farré

Collaboration


Dive into the Anika Wiese-Klinkenberg's collaboration.

Top Co-Authors

Avatar

Laura Junker

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Ulrich Schurr

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Thiele

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge