Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anil K. Jain is active.

Publication


Featured researches published by Anil K. Jain.


PLOS ONE | 2012

Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

Neera Tewari-Singh; Anil K. Jain; Swetha Inturi; Chapla Agarwal; Carl W. White; Rajesh Agarwal

Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.


Molecular Carcinogenesis | 2014

Silibinin inhibits prostate cancer cells- and RANKL-induced osteoclastogenesis by targeting NFATc1, NF-κB, and AP-1 activation in RAW264.7 cells.

Chandagirikoppal V. Kavitha; Gagan Deep; Subhash Chander Gangar; Anil K. Jain; Chapla Agarwal; Rajesh Agarwal

Currently, there are limited therapeutic options against bone metastatic prostate cancer (PCA), which is primarily responsible for high mortality and morbidity in PCA patients. Enhanced osteoclastogenesis is an essential feature associated with metastatic PCA in the bone microenvironment. Silibinin, an effective chemopreventive agent, is in phase II clinical trials in PCA patients but its efficacy against PCA cells‐induced osteoclastogenesis is largely unknown. Accordingly, here we examined silibinin effect on PCA cells‐induced osteoclastogenesis employing human PCA (PC3MM2, PC3, and C4‐2B) and murine macrophage RAW264.7 cells. We also assessed silibinin effect on receptor activator of nuclear factor κB ligand (RANKL)‐induced signaling associated with osteoclast differentiation in RAW264.7 cells. Further, we analyzed silibinin effect on osteomimicry biomarkers in PCA cells. Results revealed that silibinin (30–90 μM) inhibits PCA cells‐induced osteoclast activity and differentiation in RAW264.7 cells via modulating expression of several cytokines (IGF‐1, TGF‐β, TNF‐α, I‐TAC, M‐CSF, G‐CSF, GM‐CSF, etc.) that are important in osteoclastogenesis. Additionally, in RAW264.7 cells, silibinin decreased the RANKL‐induced expression and nuclear localization of NFATc1, which is considered the master regulator of osteoclastogenesis. Furthermore, silibinin decreased the RANKL‐induced DNA binding activity of NFATc1 and its regulators NF‐κB and AP1, and the protein expression of osteoclast specific markers (TRAP, OSCAR, and cathepsin K). Importantly, silibinin also decreased the expression of osteomimicry biomarkers (RANKL, Runx2, osteocalcin, and PTHrP) in cell culture (PC3 and C4‐2B cells) and/or in PC3 tumors. Together, our findings showing that silibinin inhibits PCA cells‐induced osteoclastogenesis, suggest that silibinin could be useful clinically against bone metastatic PCA.


Toxicology Letters | 2011

Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin.

Anil K. Jain; Neera Tewari-Singh; Mallikarjuna Gu; Swetha Inturi; Carl W. White; Rajesh Agarwal

Bifunctional alkyalating agent, sulfur mustard (SM)-induced cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 mg or 4 mg CEES for 9-48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and matrix metalloproteinase-9 (MMP-9) levels, indicating the involvement of DNA damage and inflammation in CEES-induced skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-related DNA damage and the induction of inflammatory molecules. Oral GSH (300 mg/kg) administration 1h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injury involves DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injury in humans by SM.


Breast Cancer Research | 2008

Visually assessed breast density, breast cancer risk and the importance of the craniocaudal view.

Stephen W. Duffy; Iris D. Nagtegaal; Susan M. Astley; Maureen Gc Gillan; Magnus A. McGee; Caroline R. M. Boggis; Mary E. Wilson; Ursula Beetles; Miriam A. Griffiths; Anil K. Jain; Jill Johnson; Rita M. Roberts; Heather Deans; Karen A Duncan; Geeta Iyengar; Pm Griffiths; Jane Warwick; Jack Cuzick; Fiona J. Gilbert

IntroductionMammographic density is known to be a strong risk factor for breast cancer. A particularly strong association with risk has been observed when density is measured using interactive threshold software. This, however, is a labour-intensive process for large-scale studies.MethodsOur aim was to determine the performance of visually assessed percent breast density as an indicator of breast cancer risk. We compared the effect on risk of density as measured with the mediolateral oblique view only versus that estimated as the average density from the mediolateral oblique view and the craniocaudal view. Density was assessed using a visual analogue scale in 10,048 screening mammograms, including 311 breast cancer cases diagnosed at that screening episode or within the following 6 years.ResultsWhere only the mediolateral oblique view was available, there was a modest effect of breast density on risk with an odds ratio for the 76% to 100% density relative to 0% to 25% of 1.51 (95% confidence interval 0.71 to 3.18). When two views were available, there was a considerably stronger association, with the corresponding odds ratio being 6.77 (95% confidence interval 2.75 to 16.67).ConclusionThis indicates that a substantial amount of information on risk from percentage breast density is contained in the second view. It also suggests that visually assessed breast density has predictive potential for breast cancer risk comparable to that of density measured using the interactive threshold software when two views are available. This observation needs to be confirmed by studies applying the different measurement methods to the same individuals.


Molecular Cancer | 2014

SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin.

Gagan Deep; Anil K. Jain; Anand Ramteke; Harold Ting; Kavitha C. Vijendra; Subhash Chander Gangar; Chapla Agarwal; Rajesh Agarwal

BackgroundA better molecular understanding of prostate carcinogenesis is warranted to devise novel targeted preventive and therapeutic strategies against prostate cancer (PCA), a major cause of mortality among men. Here, we examined the role of two epithelial-to-mesenchymal transition (EMT) regulators, the adherens junction protein E-cadherin and its transcriptional repressor SNAI1, in regulating the aggressiveness of PCA cells.MethodsThe growth rate of human prostate carcinoma PC3 cells with stable knock-down of E-cadherin (ShEC-PC3) and respective control cells (Sh-PC3) was compared in MTT and clonogenic assays in cell culture and in nude mouse xenograft model in vivo. Stemness of ShEC-PC3 and Sh-PC3 cells was analyzed in prostasphere assay. Western blotting and immunohistochemistry (IHC) were used to study protein expression changes following E-cadherin and SNAI1 knock-down. Small interfering RNA (siRNA) technique was employed to knock- down SNAI1 protein expression in ShEC-PC3 cells.ResultsShEC-PC3 cells exerted higher proliferation rate both in cell culture and in athymic nude mice compared to Sh-PC3 cells. ShEC-PC3 cells also formed larger and a significantly higher number of prostaspheres suggesting an increase in the stem cell-like population with E-cadherin knock-down. Also, ShEC-PC3 prostaspheres disintegration, in the presence of serum and attachment, generated a bigger mass of proliferating cells as compared to Sh-PC3 prostaspheres. Immunoblotting/IHC analyses showed that E-cadherin knock-down increases the expression of regulators/biomarkers for stemness (CD44, cleaved Notch1 and Egr-1) and EMT (Vimentin, pSrc-tyr416, Integrin β3, β-catenin, and NF-κB) in cell culture and xenograft tissues. The expression of several bone metastasis related molecules namely CXCR4, uPA, RANKL and RunX2 was also increased in ShEC-PC3 cells. Importantly, we observed a remarkable increase in SNAI1 expression in cytoplasmic and nuclear fractions, prostaspheres and xenograft tissues of ShEC-PC3 cells. Furthermore, SNAI1 knock-down by specific siRNA strongly inhibited the prostasphere formation, clonogenicity and invasiveness, and decreased the level of pSrc-tyr416, total Src and CD44 in ShEC-PC3 cells. Characterization of RWPE-1, WPE1-NA22, WPE1-NB14 and DU-145 cells further confirmed that low E-cadherin is associated with higher SNAI1 expression and prostasphere formation.ConclusionsTogether, these results suggest that E-cadherin loss promotes SNAI1 expression that controls the aggressiveness of PCA cells.


Carcinogenesis | 2012

Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells

Sangeeta Shrotriya; Gagan Deep; Mallikarjuna Gu; Manjinder Kaur; Anil K. Jain; Swetha Inturi; Rajesh Agarwal; Chapla Agarwal

Head and neck squamous cell carcinoma (HNSCC) accounts for 6% of all malignancies in USA and unfortunately the recurrence of secondary primary tumors and resistance against conventional treatments decrease the overall 5 year survival rate in HNSCC patients. Thus, additional approaches are needed to control HNSCC. Here, for the first time, employing human HNSCC Detroit 562 and FaDu cells as well as normal human epidermal keratinocytes, we investigate grape seed extract (GSE) efficacy and associated mechanism in both cell culture and nude mice xenografts. GSE selectively inhibited the growth and caused cell cycle arrest and apoptotic death in both Detroit 562 and FaDu cells by activating DNA damage checkpoint cascade, including ataxia telangiectasia mutated/ataxia telangiectasia-Rad3-related-checkpoint kinase 1/2-cell division cycle 25C as well as caspases 8, 9 and 3. Consistent with these results, GSE treatment resulted in a strong DNA damage and a decrease in the levels of DNA repair molecules breast cancer gene 1 and Rad51 and DNA repair foci. GSE-caused accumulation of intracellular reactive oxygen species was identified as a major mechanism of its effect for growth inhibition, DNA damage and apoptosis, which was remarkably reversed by antioxidant N-acetylcysteine. GSE feeding to nude mice decreased Detroit 562 and FaDu xenograft tumor growth by 67 and 65% (P < 0.001), respectively. In immunohistochemical analysis, xenografts from GSE-fed groups showed decreased proliferation but increased DNA damage and apoptosis. Together, these findings show that GSE targets both DNA damage and repair and provide mechanistic insights for its efficacy selectively against HNSCC both in cell culture and mouse xenograft, supporting its translational potential against HNSCC.


Toxicology | 2011

2-Chloroethyl ethyl sulfide causes microvesication and inflammation-related histopathological changes in male hairless mouse skin.

Anil K. Jain; Neera Tewari-Singh; David J. Orlicky; Carl W. White; Rajesh Agarwal

Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans.


Epigenetics | 2012

Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silibinin on non-small cell lung cancer cells

Samiha Mateen; Komal Raina; Anil K. Jain; Chapla Agarwal; Daniel Chan; Rajesh Agarwal

There is a renewed focus on targeted therapy against epigenetic events that are altered during the pathogenesis of lung cancer. However, the use of epigenomic modifiers as monotherapy lacks efficacy; thus, there is a need to develop safe and effective drug combinatorial regimens, which reverse epigenetic modifications and exhibit profound anticancer activity. Based on these perspectives, we evaluated, for the first time, the efficacy and associated mechanisms of a novel combinatorial regimen of histone deacetylase inhibitors (HDACi)—trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA)—with silibinin (a flavonolignan with established pre-clinical anti-lung cancer efficacy) against non-small cell lung cancer (NSCLC). Silibinin inhibited HDAC activity and decreased HDAC1–3 levels in NSCLC cells, leading to an overall increase in global histone acetylation states of histones H3 and H4. Combinations of HDCAi with silibinin synergistically augmented the cytotoxic effects of these single agents, which was associated with a dramatic increase in p21 (Cdkn1a). Subsequent ChIP assay indicated increased acetylated histone H3 and H4 levels on p21 promoter region, resulting in its increased transcription. The enhanced p21 levels promoted proteasomal degradation of cyclin B1, the limited supply of which halts the progression of cells into mitosis. Indeed, the resultant biological effect was a significant G2/M arrest by the combination treatment, followed by apoptotic cell death. Similar epigenetic modulations were observed in vivo, together with a marked reduction in xenograft growth. These findings are both novel and highly significant in establishing that HDACi with silibinin would be safe and effective to suppress NSCLC growth.


Cancer Prevention Research | 2013

Grape Seed Extract Efficacy against Azoxymethane-induced Colon Tumorigenesis in A/J Mice: Interlinking miRNA with Cytokine Signaling and Inflammation

Molly M. Derry; Komal Raina; Velmurugan Balaiya; Anil K. Jain; Sangeeta Shrotriya; Kendra M. Huber; Natalie J. Serkova; Rajesh Agarwal; Chapla Agarwal

Colorectal cancer (CRC) is the second leading cause of cancer-associated deaths, suggesting that additional strategies are needed to prevent/control this malignancy. As CRC growth and progression involve a large window (10–15 years), chemopreventive intervention could be a practical/translational strategy. Azoxymethane (AOM)-induced colon tumorigenesis in mice resembles human CRC in terms of progression of ACF to polyps, adenoma, and carcinomas and associated molecular mechanisms. Accordingly, herein we investigated grape seed extract (GSE) efficacy against AOM-induced colon tumorigenesis in A/J mice. GSE was fed in diet at 0.25% or 0.5% (w/w) dose starting 2 weeks after last AOM injection for 18 or 28 weeks. Our results showed that GSE feeding significantly decreases colon tumor multiplicity and overall tumor size. In biomarker analysis, GSE showed significant antiproliferative and pro-apoptotic activities. Detailed mechanistic studies highlighted that GSE strongly modulates cytokines/interleukins and miRNA expression profiles as well as miRNA processing machinery associated with alterations in NF-κB, β-catenin, and mitogen-activated protein kinase (MAPK) signaling. Additional studies using immunohistochemical analyses found that indeed GSE inhibits NF-κB activation and decreases the expression of its downstream targets (COX-2, iNOS, VEGF) related to inflammatory signaling, downregulates β-catenin signaling and decreases its target gene c-myc, and reduces phosphorylated extracellular signal—regulated kinase (ERK)1/2 levels. Together, these finding suggested that inflammation, proliferation, and apoptosis are targeted by GSE to prevent CRC. In summary, this study for the first time shows alterations in the expression of miRNAs and cytokines by GSE in its efficacy against AOM-induced colon tumorigenesis in A/J mouse sporadic CRC model, supporting its translational potential in CRC chemoprevention. Cancer Prev Res; 6(7); 625–33. ©2013 AACR.


Toxicology Letters | 2015

Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators

Dileep Kumar; Neera Tewari-Singh; Chapla Agarwal; Anil K. Jain; Swetha Inturi; Rama Kant; Carl W. White; Rajesh Agarwal

Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.

Collaboration


Dive into the Anil K. Jain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neera Tewari-Singh

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl W. White

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Beetles

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge