Anil K. Joshi
Children's Hospital Oakland Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anil K. Joshi.
Progress in Lipid Research | 2003
Stuart Smith; Andrzej Witkowski; Anil K. Joshi
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.
Nature Structural & Molecular Biology | 2005
Francisco J. Asturias; James Z. Chadick; Iris K Cheung; Helga Stark; Andrzej Witkowski; Anil K. Joshi; Stuart Smith
De novo synthesis of fatty acids in the cytosol of animal cells is carried out by the multifunctional, homodimeric fatty acid synthase (FAS). Cryo-EM analysis of single FAS particles imaged under conditions that limit conformational variability, combined with gold labeling of the N termini and structural analysis of the FAS monomers, reveals two coiled monomers in an overlapping arrangement. Comparison of dimeric FAS structures related to different steps in the fatty acid synthesis process indicates that only limited local rearrangements are required for catalytic interaction among different functional domains. Monomer coiling probably contributes to FAS efficiency and provides a structural explanation for the reported activity of a FAS monomer dimerized to a catalytically inactive partner. The new FAS structure provides a new paradigm for understanding the architecture of FAS and the related modular polyketide synthases.
Journal of Biological Chemistry | 2003
Lei Zhang; Anil K. Joshi; Stuart Smith
The possibility that human cells contain, in addition to the cytosolic type I fatty acid synthase complex, a mitochondrial type II malonyl-CoA-dependent system for the biosynthesis of fatty acids has been examined by cloning, expressing, and characterizing two putative components. Candidate coding sequences for a malonyl-CoA:acyl carrier protein transacylase (malonyltransferase) and its acyl carrier protein substrate, identified by BLAST searches of the human sequence data base, were located on nuclear chromosomes 22 and 16, respectively. The encoded proteins localized exclusively in mitochondria only when the putative N-terminal mitochondrial targeting sequences were present as revealed by confocal microscopy of HeLa cells infected with appropriate green fluorescent protein fusion constructs. The mature, processed forms of the mitochondrial proteins were expressed in Sf9 cells and purified, the acyl carrier protein was converted to the holoform in vitro using purified human phosphopantetheinyltransferase, and the functional interaction of the two proteins was studied. Compared with the dual specificity malonyl/acetyltransferase component of the cytosolic type I fatty acid synthase, the type II mitochondrial counterpart exhibits a relatively narrow substrate specificity for both the acyl donor and acyl carrier protein acceptor. Thus, it forms a covalent acyl-enzyme complex only when incubated with malonyl-CoA and transfers exclusively malonyl moieties to the mitochondrial holoacyl carrier protein. The type II acyl carrier protein from Bacillus subtilis, but not the acyl carrier protein derived from the human cytosolic type I fatty acid synthase, can also function as an acceptor for the mitochondrial transferase. These data provide compelling evidence that human mitochondria contain a malonyl-CoA/acyl carrier protein-dependent fatty acid synthase system, distinct from the type I cytosolic fatty acid synthase, that resembles the type II system present in prokaryotes and plastids. The final products of this system, yet to be identified, may play an important role in mitochondrial function.
Journal of Biological Chemistry | 2003
Anil K. Joshi; Lei Zhang; Vangipuram S. Rangan; Stuart Smith
A single candidate 4′-phosphopantetheine transferase, identified by BLAST searches of the human genome sequence data base, has been cloned, expressed, and characterized. The human enzyme, which is expressed mainly in the cytosolic compartment in a wide range of tissues, is a 329-residue, monomeric protein. The enzyme is capable of transferring the 4′-phosphopantetheine moiety of coenzyme A to a conserved serine residue in both the acyl carrier protein domain of the human cytosolic multifunctional fatty acid synthase and the acyl carrier protein associated independently with human mitochondria. The human 4′-phosphopantetheine transferase is also capable of phosphopantetheinylation of peptidyl carrier and acyl carrier proteins from prokaryotes. The same human protein also has recently been implicated in phosphopantetheinylation of the α-aminoadipate semialdehyde dehydrogenase involved in lysine catabolism (Praphanphoj, V., Sacksteder, K. A., Gould, S. J., Thomas, G. H., and Geraghty, M. T. (2001) Mol. Genet. Metab. 72, 336–342). Thus, in contrast to yeast, which utilizes separate 4′-phosphopantetheine transferases to service each of three different carrier protein substrates, humans appear to utilize a single, broad specificity enzyme for all posttranslational 4′-phosphopantetheinylation reactions.
Journal of Biological Chemistry | 2007
Andrzej Witkowski; Anil K. Joshi; Stuart Smith
The objective of this study was to identify the products and possible role of a putative pathway for de novo fatty acid synthesis in mammalian mitochondria. Bovine heart mitochondrial matrix preparations were prepared free from contamination by proteins from other subcellular components and, using a combination of radioisotopic labeling and mass spectrometry, were shown to contain all of the enzymes required for the extension of a 2-carbon precursor by malonyl moieties to saturated acyl-ACP thioesters containing up to 14 carbon atoms. A major product was octanoyl-ACP and, in the presence of the apo-H-protein of the glycine cleavage complex, the newly synthesized octanoyl moieties were translocated to the lipoylation site on the acceptor protein. These studies demonstrate that one of the functions of the de novo fatty acid biosynthetic pathway in mammalian mitochondria is to provide the octanoyl precursor required for the essential protein lipoylation pathway.
Journal of Biological Chemistry | 2005
Lei Zhang; Anil K. Joshi; Jörg Hofmann; Eckhart Schweizer; Stuart Smith
A human β-ketoacyl synthase implicated in a mitochondrial pathway for fatty acid synthesis has been identified, cloned, expressed, and characterized. Sequence analysis indicates that the protein is more closely related to freestanding counterparts found in prokaryotes and chloroplasts than it is to the β-ketoacyl synthase domain of the human cytosolic fatty acid synthase. The full-length nuclear-encoded 459-residue protein includes an N-terminal sequence element of ∼38 residues that functions as a mitochondrial targeting sequence. The enzyme can elongate acyl-chains containing 2–14 carbon atoms with malonyl moieties attached in thioester linkage to the human mitochondrial acyl carrier protein and is able to restore growth to the respiratory-deficient yeast mutant cem1 that lacks the endogenous mitochondrial β-ketoacyl synthase and exhibits lowered lipoic acid levels. To date, four components of a putative type II mitochondrial fatty acid synthase pathway have been identified in humans: acyl carrier protein, malonyl transferase, β-ketoacyl synthase, and enoyl reductase. The substrate specificity and complementation data for the β-ketoacyl synthase suggest that, as in plants and fungi, in humans this pathway may play an important role in the generation of octanoyl-acyl carrier protein, the lipoic acid precursor, as well as longer chain fatty acids that are required for optimal mitochondrial function.
Journal of Biological Chemistry | 1999
Andrzej Witkowski; Anil K. Joshi; Vangipuram S. Rangan; Falick Am; Witkowska He; Stuart Smith
The objective of this study was to test a new model for the homodimeric animal FAS which implies that the condensation reaction can be catalyzed by the amino-terminal β-ketoacyl synthase domain in cooperation with the penultimate carboxyl-terminal acyl carrier protein domain of either subunit. Treatment of animal fatty acid synthase dimers with dibromopropanone generates three new molecular species with decreased electrophoretic mobilities; none of these species are formed by fatty acid synthase mutant dimers lacking either the active-site cysteine of the β-ketoacyl synthase domain (C161A) or the phosphopantetheine thiol of the acyl carrier protein domain (S2151A). A double affinity-labeling strategy was used to isolate dimers that carried one or both mutations on one or both subunits; the heterodimers were treated with dibromopropanone and analyzed by a combination of sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Western blotting, gel filtration, and matrix-assisted laser desorption mass spectrometry. Thus the two slowest moving of these species, which accounted for 45 and 15% of the total, were identified as doubly and singly cross-linked dimers, respectively, whereas the fastest moving species, which accounted for 35% of the total, was identified as originating from internally cross-linked subunits. These results show that the two polypeptides of the fatty acid synthase are oriented such that head-to-tail contacts are formed both between and within subunits, and provide the first structural evidence in support of the new model.
Chemistry & Biology | 2003
Anil K. Joshi; Vangipuram S. Rangan; Andrzej Witkowski; Stuart Smith
Animal fatty acid synthases are large polypeptides containing seven functional domains that are active only in the dimeric form. Inactivity of the monomeric form has long been attributed to the obligatory participation of domains from both subunits in catalysis of substrate loading and condensation reactions. However, we have engineered a fatty acid synthase containing one wild-type subunit and one subunit compromised by mutations in all seven functional domains that is active in fatty acid synthesis. This finding indicates that a single subunit, in the context of a dimer, is able to catalyze the entire biosynthetic pathway and suggests that, in the natural complex, each of the two subunits forms a scaffold that optimizes the conformation of the companion subunit.
Biochemistry | 1999
Andrzej Witkowski; Anil K. Joshi; Ylva Lindqvist; Stuart Smith
Journal of Biological Chemistry | 1994
Byung-Ha Oh; Chul-Hee Kang; H. De Bondt; Sung-Hou Kim; Kishiko Nikaido; Anil K. Joshi; Giovanna Ferro-Luzzi Ames